Study of Protein Dynamics vs. Amyloid Formation
-
Francesca Natali
, Carlotta Marasini , Riccardo Ferrando und Alessandra Gliozzi
Abstract
Protein fibril formation has been often associated to manifestation of serious and devastating amyloyd diseases, including Alzheimer and BSA. The main mechanism for the formation of amyloid fibrils is the accumulation of protein aggregates in body´s organs.In this paper, we try to compare the dynamical behaviour of two amyloidogenic proteins, the Insulin and the Myoglobin. Insulin has been chosen for its pharmacological extensive use in diabete´s therapy, while Myoglobin is used as control, since its dynamics is now largely known. The investigation has been performed through incoherent elastic neutron scattering over a wide temperature range. Our results suggest an enhanced stiffness of Insulin with respect to Myoglobin.
© by Oldenbourg Wissenschaftsverlag, München, Germany
Artikel in diesem Heft
- Preface
- Editorial - Ad Memoriam Michael Prager
- Introduction to Quasielastic Neutron Scattering
- Recent Backscattering Instrument Developments at the ILL and SNS
- Surface Diffusion Studies Using Neutron and Helium Spin-echo Spectroscopy
- Slow Dynamics in Liquid Metals as Seen by QENS
- Are the Glass Forming Properties of Glycerol Changed when Disrupting the Hydrogen Bond Network by Addition of Silica Nanospheres?
- The Dynamic Response Function χT(Q,t) of Confined Supercooled Water and its Relation to the Dynamic Crossover Phenomenon
- Dynamics of Propylene adsorbed in Na-Y and Na-ZSM5 Zeolites: A QENS and MD Simulation Study
- Dynamics in Clays - Combining Neutron Scattering and Microscopic Simulation
- Concrete and Cement Paste Studied by Quasi-Elastic Neutron Scattering
- Dynamics in Biological Systems as seen by QENS
- Study of Protein Dynamics vs. Amyloid Formation
- Dynamics of Nanostructures for Drug Delivery: the Potential of QENS
- Dynamical Properties of Decorated Lamellar Microemulsions in the Brush Regime
- Monomer Dynamics in SDS Micellar Solution
- Hydrogen Dynamics in Lightweight Tetrahydroborates
- Dynamics of Caged Hydronium Ions and Super-protonic Conduction in (H3O)SbTeO6
Artikel in diesem Heft
- Preface
- Editorial - Ad Memoriam Michael Prager
- Introduction to Quasielastic Neutron Scattering
- Recent Backscattering Instrument Developments at the ILL and SNS
- Surface Diffusion Studies Using Neutron and Helium Spin-echo Spectroscopy
- Slow Dynamics in Liquid Metals as Seen by QENS
- Are the Glass Forming Properties of Glycerol Changed when Disrupting the Hydrogen Bond Network by Addition of Silica Nanospheres?
- The Dynamic Response Function χT(Q,t) of Confined Supercooled Water and its Relation to the Dynamic Crossover Phenomenon
- Dynamics of Propylene adsorbed in Na-Y and Na-ZSM5 Zeolites: A QENS and MD Simulation Study
- Dynamics in Clays - Combining Neutron Scattering and Microscopic Simulation
- Concrete and Cement Paste Studied by Quasi-Elastic Neutron Scattering
- Dynamics in Biological Systems as seen by QENS
- Study of Protein Dynamics vs. Amyloid Formation
- Dynamics of Nanostructures for Drug Delivery: the Potential of QENS
- Dynamical Properties of Decorated Lamellar Microemulsions in the Brush Regime
- Monomer Dynamics in SDS Micellar Solution
- Hydrogen Dynamics in Lightweight Tetrahydroborates
- Dynamics of Caged Hydronium Ions and Super-protonic Conduction in (H3O)SbTeO6