Concrete and Cement Paste Studied by Quasi-Elastic Neutron Scattering
-
Heloisa N. Bordallo
und Laurence P. Aldridge
Abstract
In a world where the effects of climate change on weather patterns is accepted as real and serious, the problem of decreasing the production of carbon dioxide is perceived as increasingly important. The cement industry produces 5–7% of the world’s carbon dioxide emission and its survival will depend on improvements in the production of concrete which will be both more durable and require less carbon dioxide per unit of manufacture than the currently produced concrete. The durability of concrete is related to its ability to limit fluid transmission and knowledge of how to reduce the rate at which water will be transmitted through cement paste is critical to improving durability. However, because of the complex chemical and physical nature of cement pastes, understanding water mobility is a great challenge. Many techniques are not applicable simply because they are not sensitive to the range of size from angstroms to microns and the extent of water interaction with the cement where water can either be chemically bound at hydroxyls or physically free in large pores. In this review paper, we present the most up to date results on the physical chemistry of the water/ cement paste interactions studied by quasi-elastic neutron scattering. These results bring new insight to the mobility of water in the gel pores, the small pores (radius less than 50Å) that control the rate of water transmission in the cement pastes from which high quality concrete will be made.
© by Oldenbourg Wissenschaftsverlag, München, Germany
Artikel in diesem Heft
- Preface
- Editorial - Ad Memoriam Michael Prager
- Introduction to Quasielastic Neutron Scattering
- Recent Backscattering Instrument Developments at the ILL and SNS
- Surface Diffusion Studies Using Neutron and Helium Spin-echo Spectroscopy
- Slow Dynamics in Liquid Metals as Seen by QENS
- Are the Glass Forming Properties of Glycerol Changed when Disrupting the Hydrogen Bond Network by Addition of Silica Nanospheres?
- The Dynamic Response Function χT(Q,t) of Confined Supercooled Water and its Relation to the Dynamic Crossover Phenomenon
- Dynamics of Propylene adsorbed in Na-Y and Na-ZSM5 Zeolites: A QENS and MD Simulation Study
- Dynamics in Clays - Combining Neutron Scattering and Microscopic Simulation
- Concrete and Cement Paste Studied by Quasi-Elastic Neutron Scattering
- Dynamics in Biological Systems as seen by QENS
- Study of Protein Dynamics vs. Amyloid Formation
- Dynamics of Nanostructures for Drug Delivery: the Potential of QENS
- Dynamical Properties of Decorated Lamellar Microemulsions in the Brush Regime
- Monomer Dynamics in SDS Micellar Solution
- Hydrogen Dynamics in Lightweight Tetrahydroborates
- Dynamics of Caged Hydronium Ions and Super-protonic Conduction in (H3O)SbTeO6
Artikel in diesem Heft
- Preface
- Editorial - Ad Memoriam Michael Prager
- Introduction to Quasielastic Neutron Scattering
- Recent Backscattering Instrument Developments at the ILL and SNS
- Surface Diffusion Studies Using Neutron and Helium Spin-echo Spectroscopy
- Slow Dynamics in Liquid Metals as Seen by QENS
- Are the Glass Forming Properties of Glycerol Changed when Disrupting the Hydrogen Bond Network by Addition of Silica Nanospheres?
- The Dynamic Response Function χT(Q,t) of Confined Supercooled Water and its Relation to the Dynamic Crossover Phenomenon
- Dynamics of Propylene adsorbed in Na-Y and Na-ZSM5 Zeolites: A QENS and MD Simulation Study
- Dynamics in Clays - Combining Neutron Scattering and Microscopic Simulation
- Concrete and Cement Paste Studied by Quasi-Elastic Neutron Scattering
- Dynamics in Biological Systems as seen by QENS
- Study of Protein Dynamics vs. Amyloid Formation
- Dynamics of Nanostructures for Drug Delivery: the Potential of QENS
- Dynamical Properties of Decorated Lamellar Microemulsions in the Brush Regime
- Monomer Dynamics in SDS Micellar Solution
- Hydrogen Dynamics in Lightweight Tetrahydroborates
- Dynamics of Caged Hydronium Ions and Super-protonic Conduction in (H3O)SbTeO6