A Way for Determining the Effective Three Phase Boundary Width of Solid State Electrochemical Reactions from the Primary and Secondary Current Distribution at Microelectrodes
-
Jürgen Fleig
A way is suggested for determining the effective three phase boundary width of electrodes on solid electrolytes from the difference between the electrolyte resistance of the primary and the secondary current distribution at a circular microelectrode. It is shown by means of numerical finite element calculations how the potential distribution in the solid electrolyte depends on the frequency and how the corresponding variation of the electrolyte resistance can lead to an additional semicircle in the complex impedance plane. An equivalent circuit is introduced for analyzing such a situation and thus for determining the additional ohmic resistance due to current constriction close to the three phase boundary region of the electrode. This additional resistance is quantitatively related to the effective three phase boundary width and thus can serve as a tool to estimate the size of the electrochemically active region of electrode reactions such as oxygen reduction or hydrogen oxidation on oxide ion conducting solid electrolytes.
© Oldenbourg Wissenschaftsverlag
Articles in the same Issue
- Preface: Dieter Kolb zum 65. Geburtstag
- Precursor Adsorption of SbBr3 on Au(111) and Au(100) for Antimony Underpotential Deposition in a BMIBF4 Ionic Liquid – A Comparison with SbCl3
- Electroreduction of Nitrate at Copper Electrodes and Copper-PANI Composite Layers
- Potential Program Invariant Representation of Diffusion–Adsorption Related Voltammograms
- A Way for Determining the Effective Three Phase Boundary Width of Solid State Electrochemical Reactions from the Primary and Secondary Current Distribution at Microelectrodes
- Carbon Nanotubes and Electrochemistry
- Pd3Fe and Pt Monolayer-Modified Pd3Fe Electrocatalysts for Oxygen Reduction
- Electrochemical Nucleation and Growth Kinetics of Nanostructured Gold on Rotating Disc and Stationary Electrodes
- Theoretical Trends in Particle Size Effects for the Oxygen Reduction Reaction
- Metal Deposition by Inducing a Microgalvanic Cell with the Scanning Electrochemical Microscope (SECM)
- Formation of a Molecular Glue Based on the Electrochemical Reduction of 4-Hydroxyphenyldiazonium for the Attachment of Thin Sol–Gel Film on Glassy Carbon
- Confined Spatio-Temporal Chaos During Metal Electrodissolution: Simulations
- Comparative Study of Thymine Adsorption on Cu- and Ag-Adlayers on Au(111) Electrodes
- The Adsorption and Growth of Copper on As-Terminated GaAs(001): Physical Vapour versus Electrochemical Deposition
- Monte Carlo Simulation of Kinetically Limited Electrodeposition on a Surface with Metal Seed Clusters
- Normalized Differential Reflectance Spectroscopy at Polycrystalline Platinum Electrodes in Aqueous Acidic Electrolytes: Quantitative Aspects
- Hydrogen Adsorption on Activated Platinum Electrodes – An Electrochemical Impedance Spectroscopy Study
- Voltammetry and Electrocatalysis of Achromobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces
- Electrocatalytic Trends on IB Group Metals: The Oxygen Reduction Reaction
- DFT Studies on the Nature of Coadsorbates on SO42-/Au(111)
- In Situ Scanning Tunnelling Microscopy in Ionic Liquids: Prospects and Challenges
Articles in the same Issue
- Preface: Dieter Kolb zum 65. Geburtstag
- Precursor Adsorption of SbBr3 on Au(111) and Au(100) for Antimony Underpotential Deposition in a BMIBF4 Ionic Liquid – A Comparison with SbCl3
- Electroreduction of Nitrate at Copper Electrodes and Copper-PANI Composite Layers
- Potential Program Invariant Representation of Diffusion–Adsorption Related Voltammograms
- A Way for Determining the Effective Three Phase Boundary Width of Solid State Electrochemical Reactions from the Primary and Secondary Current Distribution at Microelectrodes
- Carbon Nanotubes and Electrochemistry
- Pd3Fe and Pt Monolayer-Modified Pd3Fe Electrocatalysts for Oxygen Reduction
- Electrochemical Nucleation and Growth Kinetics of Nanostructured Gold on Rotating Disc and Stationary Electrodes
- Theoretical Trends in Particle Size Effects for the Oxygen Reduction Reaction
- Metal Deposition by Inducing a Microgalvanic Cell with the Scanning Electrochemical Microscope (SECM)
- Formation of a Molecular Glue Based on the Electrochemical Reduction of 4-Hydroxyphenyldiazonium for the Attachment of Thin Sol–Gel Film on Glassy Carbon
- Confined Spatio-Temporal Chaos During Metal Electrodissolution: Simulations
- Comparative Study of Thymine Adsorption on Cu- and Ag-Adlayers on Au(111) Electrodes
- The Adsorption and Growth of Copper on As-Terminated GaAs(001): Physical Vapour versus Electrochemical Deposition
- Monte Carlo Simulation of Kinetically Limited Electrodeposition on a Surface with Metal Seed Clusters
- Normalized Differential Reflectance Spectroscopy at Polycrystalline Platinum Electrodes in Aqueous Acidic Electrolytes: Quantitative Aspects
- Hydrogen Adsorption on Activated Platinum Electrodes – An Electrochemical Impedance Spectroscopy Study
- Voltammetry and Electrocatalysis of Achromobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces
- Electrocatalytic Trends on IB Group Metals: The Oxygen Reduction Reaction
- DFT Studies on the Nature of Coadsorbates on SO42-/Au(111)
- In Situ Scanning Tunnelling Microscopy in Ionic Liquids: Prospects and Challenges