Startseite Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications

  • Varinder Bains , Pooja Sharma ORCID logo EMAIL logo , Bharti Budhalakoti und Shubham Sharma
Veröffentlicht/Copyright: 4. August 2025

Abstract

Nanotechnology has revolutionized material science by enabling the manipulation of matter at the atomic and molecular scale. This review presents an in-depth analysis of nanoparticles (NPs), highlighting their classification into carbon-based, lipid-based, polymeric, metal, semiconductor, and ceramic types. It explores the physical and chemical uniqueness of nanomaterials, such as high surface-area-to-volume ratios and quantum effects, which empower their enhanced performance across domains. Emphasis is placed on synthesis strategies, including both top-down and bottom-up approaches, with a special focus on green and sustainable methods utilizing plant extracts and biological organisms. Furthermore, this review discusses wide-ranging applications of NPs in environmental remediation, medicine, electronics, mechanical systems, and energy harvesting. The potential of nanoparticles to offer targeted drug delivery, water purification, lightweight electronics, and energy-efficient systems makes them vital for future innovations. Challenges and perspectives on the scalability and safe deployment of nanomaterials are also briefly addressed.


Corresponding author: Pooja Sharma, Department of Chemistry, Lovely Professional University, Phagwara 144401, Punjab, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Lin, H. Y.; Nurunnabi, M.; Chen, W. H.; Huang, C. H. Graphene in Neuroscience. In Biomedical Applications of Graphene and 2D Nanomaterials; Elsevier: Amsterdam, 2019; pp 337–351.10.1016/B978-0-12-815889-0.00016-7Suche in Google Scholar

2. Deshmukh, M. A.; Kang, B. C.; Jeon, J. Y.; Ha, T. J. Stable Dispersions of single-wall Carbon Nanotubes Using self-assembled Amphiphilic Copolymer Surfactants for Fabricating Wafer-Scale Devices. ACS Appl. Nano Mater. 2020, 3 (9), 8829–8839; https://doi.org/10.1021/acsanm.0c01616.Suche in Google Scholar

3. Ayanda, O. S.; Mmuoegbulam, A. O.; Okezie, O.; Durumin Iya, N. I.; Mohammed, S. A. E.; James, P. H.; Muhammad, A. B.; Unimke, A. A.; Alim, S. A.; Yahaya, S. M.; Ojo, A.; Adaramoye, T. O.; Ekundayo, S. K.; Abdullahi, A.; Badamasi, H. Recent Progress in Carbon-based Nanomaterials: Critical Review. J. Nanopart. Res. 2024, 26 (5), 106; https://doi.org/10.1007/s11051-024-06006-2.Suche in Google Scholar

4. Davidraj, J. M.; Sathish, C. I.; Benzigar, M. R.; Li, Z.; Zhang, X.; Bahadur, R.; Ramadass, K.; Singh, G.; Yi, J.; Kumar, P.; Vinu, A. Recent Advances in Food Waste-Derived Nanoporous Carbon for Energy Storage. Sci. Technol. Adv. Mater. 2024, 25 (1), 2357062; https://doi.org/10.1080/14686996.2024.2357062.Suche in Google Scholar PubMed PubMed Central

5. Cho, G. Printed Carbon Nanotube Based Transistors as Water Quality Sensors. Doctoral Dissertation, Institut Polytechnique de Paris, Paris, 2021.Suche in Google Scholar

6. Trong Tam, N.; Viet Phuong, N.; Hong Khoi, P.; Ngoc Minh, P.; Afrand, M.; Van Trinh, P.; Hung Thang, B.; Żyła, G.; Estellé, P.; Estellé, P. Carbon Nanomaterial-based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials 2020, 10 (6), 1199; https://doi.org/10.3390/nano10061199.Suche in Google Scholar PubMed PubMed Central

7. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12 (7), 908–931; https://doi.org/10.1016/j.arabjc.2017.05.011.Suche in Google Scholar

8. García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J. M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials 2019, 9 (4), 638; https://doi.org/10.3390/nano9040638.Suche in Google Scholar PubMed PubMed Central

9. Ozpolat, B.; Sood, A. K.; Lopez-Berestein, G. Liposomal siRNA Nanocarriers for Cancer Therapy. Adv. Drug Deliv. Rev. 2014, 66, 110–116; https://doi.org/10.1016/j.addr.2013.12.008.Suche in Google Scholar PubMed PubMed Central

10. Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor Quantum Dots and Metal Nanoparticles: Syntheses, Optical Properties, and Biological Applications. Anal. Bioanal. Chem. 2008, 391, 2469–2495; https://doi.org/10.1007/s00216-008-2185-7.Suche in Google Scholar PubMed

11. Nayak, M. K.; Singh, J.; Singh, B.; Soni, S.; Pandey, V. S.; Tyagi, S. Introduction to Semiconductor Nanomaterial and Its Optical and Electronics Properties. In Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications; Elsevier: Amsterdam, 2017; pp 1–33.10.1016/B978-0-323-44922-9.00001-6Suche in Google Scholar

12. Majumder, M. K.; Kumbhare, V. R.; Japa, A.; Kaushik, B. K. Introduction to Microelectronics to Nanoelectronics: Design and Technology; CRC Press: Boca Raton, FL, 2020.10.1201/9781003049203Suche in Google Scholar

13. Duncan, R.; Vicent, M. J. Polymer Therapeutics-Prospects for 21st Century: the End of the Beginning. Adv. Drug Deliv. Rev. 2013, 65 (1), 60–70; https://doi.org/10.1016/j.addr.2012.08.012.Suche in Google Scholar PubMed

14. Carreiró, F.; Oliveira, A. M.; Neves, A.; Pires, B.; Nagasamy Venkatesh, D.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A. M.; Santini, A.; Souto, E. B. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25 (3731); https://doi.org/10.3390/molecules25163731.Suche in Google Scholar PubMed PubMed Central

15. Schaffazick, S. R.; Pohlmann, A. R.; Dalla-Costa, T.; Guterres, S. S. Freeze-Drying Polymeric Colloidal Suspensions: Nanocapsules, Nanospheres and Nanodispersion. A Comparative Study. Eur. J. Pharm. Biopharm. 2003, 56 (3), 501–505. https://doi.org/10.1016/s0939-6411(03)00139-5.Suche in Google Scholar PubMed

16. Guterres, S. S.; Alves, M. P.; Pohlmann, A. R. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications. Drug Target Insights 2007, 2, 117739280700200002; https://doi.org/10.1177/117739280700200002.Suche in Google Scholar

17. Mallakpour, S.; Behranvand, V. J. E. P. L. Polymeric Nanoparticles: Recent Development in Synthesis and Application. Express Polym. Lett. 2016, 10 (11), 895; https://doi.org/10.3144/expresspolymlett.2016.84.Suche in Google Scholar

18. Cano, A.; Sánchez-López, E.; Ettcheto, M.; Lopez-Machado, A.; Espina, M.; Souto, E. B.; Galindo, R.; Camins, A.; García, M. L.; Turowski, P. Current Advances in the Development of Novel Polymeric Nanoparticles for the Treatment of Neurodegenerative Diseases. Nanomedicine 2020, 15 (12), 1239–1261; https://doi.org/10.2217/nnm-2019-0443.Suche in Google Scholar PubMed

19. Yang, N.; WeiHong, L.; Hao, L. Biosynthesis of Au Nanoparticles Using Agricultural Waste Mango Peel Extract and Its in Vitro Cytotoxic Effect on Two Normal Cells. Mater. Lett. 2014, 134, 67–70; https://doi.org/10.1016/j.matlet.2014.07.025.Suche in Google Scholar

20. Kodintcev, A. N. Characterization and Potential Applications of Silver Nanoparticles: an Insight on Different Mechanisms. Chim. Techno Acta 2022, 9 (4); https://doi.org/10.15826/chimtech.2022.9.4.02.Suche in Google Scholar

21. Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9 (6), 385–406.Suche in Google Scholar

22. Gupta, R.; Xie, H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J. Enviro. Pathol. Toxicol. Oncol. 2018, 37 (3); https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018026009.Suche in Google Scholar

23. Vijayakumar, M.; Priya, K.; Nancy, F. T.; Noorlidah, A.; Ahmed, A. B. A. Biosynthesis, Characterisation and Anti-bacterial Effect of plant-mediated Silver Nanoparticles Using Artemisia nilagirica. Ind. Crop. Prod. 2013, 41, 235–240; https://doi.org/10.1016/j.indcrop.2012.04.017.Suche in Google Scholar

24. Bhattacharya, R.; Mukherjee, P. Biological Properties of “Naked” Metal Nanoparticles. Adv. Drug Deliv. Rev. 2008, 60 (11), 1289–1306; https://doi.org/10.1016/j.addr.2008.03.013.Suche in Google Scholar PubMed

25. Puvanakrishnan, P.; Park, J.; Chatterjee, D.; Krishnan, S.; Tunnell, J. W. In Vivo Tumor Targeting of Gold Nanoparticles: Effect of Particle Type and Dosing Strategy. Int. J. Nanomed. 2012, 1251–1258; https://doi.org/10.2147/ijn.s29147.Suche in Google Scholar PubMed PubMed Central

26. Belyakov, A. V. Introduction of Nanomaterials and Nanotechnologies in Ceramics Plants. Glass Ceram. 2010, 67, 203–208; https://doi.org/10.1007/s10717-010-9263-y.Suche in Google Scholar

27. Baeza, A. Ceramic Nanoparticles for Cancer Treatment. Bio‐Ceram. Clin. Appl. 2014, 421–455; https://doi.org/10.1002/9781118406748.ch14.Suche in Google Scholar

28. D’Amato, R.; Falconieri, M.; Gagliardi, S.; Popovici, E.; Serra, E.; Terranova, G.; Borsella, E. Synthesis of Ceramic Nanoparticles by Laser Pyrolysis: from Research to Applications. J. Anal. Appl. Pyrolysis 2013, 104, 461–469; https://doi.org/10.1016/j.jaap.2013.05.026.Suche in Google Scholar

29. American Chemical Society. Frontiers in Nucleic Acids; ACS: Indianapolis, IN, 2011.Suche in Google Scholar

30. Alagumalai, A.; Mahian, O.; Hollmann, F.; Zhang, W. Environmentally Benign Solid Catalysts for Sustainable Biodiesel Production: a Critical Review. Sci. Total Environ. 2021, 768, 144856; https://doi.org/10.1016/j.scitotenv.2020.144856.Suche in Google Scholar PubMed

31. Fereidoun, H.; Nourddin, M. S.; Rreza, N. A.; Mohsen, A.; Ahmad, R.; Pouria, H. The Effect of long-term Exposure to Particulate Pollution on the Lung Function of Teheranian and Zanjanian Students. Pakistan J. Physiol. 2007, 3 (2).Suche in Google Scholar

32. Fotiou, T.; Triantis, T. M.; Kaloudis, T.; O’Shea, K. E.; Dionysiou, D. D.; Hiskia, A. Assessment of the Roles of Reactive Oxygen Species in the UV and Visible Light Photocatalytic Degradation of Cyanotoxins and Water Taste and Odor Compounds Using C–TiO2. Water Res. 2016, 90, 52–61; https://doi.org/10.1016/j.watres.2015.12.006.Suche in Google Scholar PubMed

33. Glenn, J. C. Nanotechnology: Future Military Environmental Health Considerations. Technol. Forecast. Soc. Change 2006, 73 (2), 128–137; https://doi.org/10.1016/j.techfore.2005.06.010.Suche in Google Scholar

34. Dong, J.; Xu, W.; Liu, S.; Du, L.; Chen, Q.; Yang, T.; Gong, Y.; Li, M.; Tan, X.; Liu, Y. Recent Advances in Applications of Nonradical Oxidation in Water Treatment: Mechanisms, Catalysts and Environmental Effects. J. Clean. Prod. 2021, 321, 128781; https://doi.org/10.1016/j.jclepro.2021.128781.Suche in Google Scholar

35. de Vidales, M. J. M.; Nieto-Márquez, A.; Morcuende, D.; Atanes, E.; Blaya, F.; Soriano, E.; Fernández-Martínez, F. 3D Printed Floating Photocatalysts for Wastewater Treatment. Catal. Today 2019, 328, 157–163; https://doi.org/10.1016/j.cattod.2019.01.074.Suche in Google Scholar

36. Karthigadevi, G.; Manikandan, S.; Karmegam, N.; Subbaiya, R.; Chozhavendhan, S.; Ravindran, B.; Chang, S. W.; Awasthi, M. K. RETRACTED: Chemico-Nanotreatment Methods for the Removal of Persistent Organic Pollutants and Xenobiotics in water–A Review. Bioresour. Technol. 2021, 324, 124678; https://doi.org/10.1016/j.biortech.2021.124678.Suche in Google Scholar PubMed

37. Rikhtehgaran, S.; Lohrasebi, A. Water Desalination by a Designed Nanofilter of graphene-charged Carbon Nanotube: a Molecular Dynamics Study. Desalination 2015, 365, 176–181; https://doi.org/10.1016/j.desal.2015.02.040.Suche in Google Scholar

38. Gao, B.; Liu, L.; Liu, J.; Yang, F. A photo-catalysis and Rotating nano-CaCO3 Dynamic Membrane System with Fe-ZnIn2S4 Efficiently Removes Halogenated Compounds in Water. Appl. Catal. B: Environ. 2013, 138, 62–69; https://doi.org/10.1016/j.apcatb.2013.02.023.Suche in Google Scholar

39. Hosseini, M.; Haghighi, M.; Kahforoushan, D.; Zarrabi, M. Sono-Dispersion of Ceria and Palladium in Preparation and Characterization of Pd/Al2O3-clinoptilolite-CeO2 Nanocatalyst for Treatment of Polluted Air via Low Temperature VOC Oxidation. Process Saf. Environ. Prot. 2017, 106, 284–293; https://doi.org/10.1016/j.psep.2016.06.028.Suche in Google Scholar

40. Raju, N. V.; Sunny, J. S.; Gideon, D. A.; Sukumar, K.; Riaz, S.; Nawaz, S.; Syed, A.; Eswaramoorthy, R.; Pankaj, P. K.; Parashar, A. Deciphering the Influence of Soil and Feed on the Nutritional Status of Ruminants in Rainfed Areas Using Metagenomic Analysis. J. King Saud Univ. Sci. 2023, 35 (4), 102601; https://doi.org/10.1016/j.jksus.2023.102601.Suche in Google Scholar

41. Hanif, A.; Farooq, R.; Rehman, M. U.; Khan, R.; Majid, S.; Ganaie, M. A. Aptamer Based Nanobiosensors: Promising Healthcare Devices. Saudi Pharmaceut. J. 2019, 27 (3), 312–319; https://doi.org/10.1016/j.jsps.2018.11.013.Suche in Google Scholar PubMed PubMed Central

42. Wang, A. Z.; Langer, R.; Farokhzad, O. C. Nanoparticle Delivery of Cancer Drugs. Ann. Rev. Med. 2012, 63 (1), 185–198; https://doi.org/10.1146/annurev-med-040210-162544.Suche in Google Scholar PubMed

43. Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; Habtemariam, S.; Shin, H. S. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 1–33; https://doi.org/10.1186/s12951-018-0392-8.Suche in Google Scholar PubMed PubMed Central

44. Chen, C.; Xing, G.; Wang, J.; Zhao, Y.; Li, B.; Tang, J.; Jia, G.; Wang, T.; Sun, J.; Xing, L.; Yuan, H.; Gao, Y.; Meng, H.; Chen, Z.; Zhao, F.; Chai, Z.; Fang, X. Multihydroxylated [Gd@ C82 (OH) 22] N Nanoparticles: Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Lett. 2005, 5 (10), 2050–2057; https://doi.org/10.1021/nl051624b.Suche in Google Scholar PubMed

45. Balzani, V. Nanoscience and Nanotechnology: a Personal View of a Chemist. Small 2005, 1 (3), 278–283; https://doi.org/10.1002/smll.200400010.Suche in Google Scholar PubMed

46. Lugani, Y.; Kaur, G.; Oberoi, S.; Sooch, B. S. Nanotechnology: Current Applications and Future Prospects. World J. Adv. Health Care Res. 2018, 2, 137–139.Suche in Google Scholar

47. Lo Nigro, R.; Fiorenza, P.; Greco, G.; Schilirò, E.; Roccaforte, F. Structural and Insulating Behaviour of high-permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices. Materials 2022, 15 (3), 830; https://doi.org/10.3390/ma15030830.Suche in Google Scholar PubMed PubMed Central

48. Kosmala, A.; Wright, R.; Zhang, Q.; Kirby, P. Synthesis of Silver Nano Particles and Fabrication of Aqueous Ag Inks for Inkjet Printing. Mater. Chem. Phys. 2011, 129 (3), 1075–1080; https://doi.org/10.1016/j.matchemphys.2011.05.064.Suche in Google Scholar

49. Kandil, M. The Role of Nanotechnology in Electronic Properties of Materials; Springer: ENRRA, Cairo, 2016.Suche in Google Scholar

50. Mishra Sunil, B.; Liyakat, K. S. S.; Liyakat, K. K. S. Nanotechnology’s Importance in Mechanical Engineering. Development 2024, 4, 5.Suche in Google Scholar

51. Kot, M.; Major, Ł.; Lackner, J. M.; Chronowska-Przywara, K.; Janusz, M.; Rakowski, W. Mechanical and Tribological Properties of Carbon‐Based Graded Coatings. J. Nanomater. 2016, 2016 (1), 8306345; https://doi.org/10.1155/2016/8306345.Suche in Google Scholar

52. Guo, D.; Xie, G.; Luo, J. Mechanical Properties of Nanoparticles: Basics and Applications. J. Phys. D: Appl. Phys. 2013, 47 (1), 013001; https://doi.org/10.1088/0022-3727/47/1/013001.Suche in Google Scholar

53. Tondan, H.; Singh, A. K. Advances in Energy Harvesting and Storage Materials: Unlocking the Potential of solid-state Nanomaterials for Renewable Energy Technologies. In Futuristic Trends in Physical Sciences (Vol. 3, Book 4); Iterative International Publishers: Chikkamagaluru; Selfypage Developers Pvt Ltd, 2024, pp. 21–32. ISBN 978-93-5747-671-3.10.58532/V3BKPS4P1CH2Suche in Google Scholar

54. Avasare, V.; Zhang, Z.; Avasare, D.; Khan, I.; Qurashi, A. Room‐Temperature Synthesis of TiO2 Nanospheres and Their Solar Driven Photoelectrochemical Hydrogen Production. Int. J. Energy Res. 2015, 39 (12), 1714–1719; https://doi.org/10.1002/er.3372.Suche in Google Scholar

55. Greeley, J.; Markovic, N. M. The Road from Animal Electricity to Green Energy: Combining Experiment and Theory in Electrocatalysis. Energy Environ. Sci. 2012, 5 (11), 9246–9256; https://doi.org/10.1039/c2ee21754f.Suche in Google Scholar

56. Wang, Y.; Xia, Y. Bottom-up and top-down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-point Metals. Nano Lett. 2004, 4 (10), 2047–2050; https://doi.org/10.1021/nl048689j.Suche in Google Scholar

57. Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: a Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2 (6), 1821–1871; https://doi.org/10.1039/d0ma00807a.Suche in Google Scholar

58. Gorrasi, G.; Sorrentino, A. Mechanical Milling as a Technology to Produce Structural and Functional bio-nanocomposites. Green Chem. 2015, 17 (5), 2610–2625; https://doi.org/10.1039/c5gc00029g.Suche in Google Scholar

59. Yadav, T. P.; Yadav, R. M.; Singh, D. P. Mechanical Milling: a Top down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanosci. Nanotechnol. 2012, 2 (3), 22–48; https://doi.org/10.5923/j.nn.20120203.01.Suche in Google Scholar

60. Ostermann, R.; Cravillon, J.; Weidmann, C.; Wiebcke, M.; Smarsly, B. M. Metal–Organic Framework Nanofibers via Electrospinning. Chem. Commun. 2011, 47 (1), 442–444; https://doi.org/10.1039/c0cc02271c.Suche in Google Scholar PubMed

61. Chronakis, I. S. Micro-/nano-fibers by Electrospinning Technology: Processing, Properties and Applications. Micromanuf. Eng. Technol. 2010, 2010, 264–286.10.1016/B978-0-8155-1545-6.00016-8Suche in Google Scholar

62. Du, P.; Song, L.; Xiong, J.; Li, N.; Xi, Z.; Wang, L.; Jin, D.; Guo, S.; Yuan, Y. Coaxial Electrospun TiO2/ZnO core–sheath Nanofibers Film: Novel Structure for Photoanode of dye-sensitized Solar Cells. Electrochim. Acta 2012, 78, 392–397; https://doi.org/10.1016/j.electacta.2012.06.034.Suche in Google Scholar

63. Tran, V.; Wen, X. Rapid Prototyping Technologies for Tissue Regeneration. Rapid prototyp. Biomater. 2014, 97–155; https://doi.org/10.1533/9780857097217.97.Suche in Google Scholar

64. Amendola, V.; Meneghetti, M. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Phys. Chem. Chem. Phys. 2009, 11 (20), 3805–3821; https://doi.org/10.1039/b900654k.Suche in Google Scholar PubMed

65. Su, S. S.; Chang, I. Review of Production Routes of Nanomaterials. Commer. Nanotechnol. Case Study Approach 2017, 15–29. https://doi.org/10.1007/978-3-319-56979-6_2.Suche in Google Scholar

66. Behrisch, R. Sputtering by Particle Bombardment I; Springer: Boston, MA, Vol. 47, 1981.10.1007/3-540-10521-2Suche in Google Scholar

67. Muñoz-García, J.; Vázquez, L.; Cuerno, R.; Sánchez-García, J. A.; Castro, M.; Gago, R. Self-Organized Surface Nanopatterning by Ion Beam Sputtering. Toward Funct. Nanomater. 2009, 323–398. https://doi.org/10.1007/978-0-387-77717-7_10.Suche in Google Scholar

68. Joh, D. W.; Jung, T. K.; Lee, H. S.; Kim, D. H. Synthesis of Nanoparticles Using Electrical Explosion of Ni Wire in Pt Solution. J. Nanosci. Nanotechnol. 2013, 13 (9), 6092–6094; https://doi.org/10.1166/jnn.2013.7677.Suche in Google Scholar PubMed

69. Kotov, Y. A. The Electrical Explosion of Wire: a Method for the Synthesis of Weakly Aggregated Nanopowders. Nanotechnol. Russ. 2009, 4 (7), 415–424; https://doi.org/10.1134/s1995078009070039.Suche in Google Scholar

70. Zheng, Z.; Zhang, X.; Carbo, D.; Clark, C.; Nathan, C. A.; Lvov, Y. Sonication-Assisted Synthesis of polyelectrolyte-coated Curcumin Nanoparticles. Langmuir 2010, 26 (11), 7679–7681; https://doi.org/10.1021/la101246a.Suche in Google Scholar PubMed PubMed Central

71. Ali Dheyab, M.; Aziz, A. A.; Jameel, M. S. Recent Advances in Inorganic Nanomaterials Synthesis Using Sonochemistry: a Comprehensive Review on Iron Oxide, Gold and Iron Oxide Coated Gold Nanoparticles. Molecules 2021, 26 (9), 2453; https://doi.org/10.3390/molecules26092453.Suche in Google Scholar PubMed PubMed Central

72. Pimpin, A.; Srituravanich, W. Review on Micro-and Nanolithography Techniques and Their Applications. Eng. J. 2012, 16 (1), 37–56; https://doi.org/10.4186/ej.2012.16.1.37.Suche in Google Scholar

73. Brady, B.; Wang, P. H.; Steenhoff, V.; Brolo, A. G. Nanostructuring Solar Cells Using Metallic Nanoparticles. In Metal Nanostructures for Photonics; Elsevier: Amsterdam, 2019; pp 197–221.10.1016/B978-0-08-102378-5.00009-XSuche in Google Scholar

74. Dikusar, A. I.; Globa, P. G.; Belevskii, S. S.; Sidel’nikova, S. P. On Limiting Rate of Dimensional Electrodeposition at Meso-and Nanomaterial Manufacturing by Template Synthesis. Surface Eng. Appl. Electrochem. 2009, 45, 171–179; https://doi.org/10.3103/s1068375509030016.Suche in Google Scholar

75. Ago, H. CVD Growth of high-quality single-layer Graphene. Front. Graphene Carbon Nanotubes: Dev. Appl. 2015, 3–20. https://doi.org/10.1007/978-4-431-55372-4_1.Suche in Google Scholar

76. Machac, P.; Cichon, S.; Lapcak, L.; Fekete, L. Graphene Prepared by Chemical Vapour Deposition Process. Graphene Technol. 2020, 5, 9–17; https://doi.org/10.1007/s41127-019-00029-6.Suche in Google Scholar

77. Patil, N.; Bhaskar, R.; Vyavhare, V.; Dhadge, R.; Khaire, V.; Patil, Y. Overview on Methods of Synthesis of Nanoparticles. Int. J. Curr. Pharmaceut. Res. 2021, 13 (2), 11–16; https://doi.org/10.22159/ijcpr.2021v13i2.41556.Suche in Google Scholar

78. Parashar, M.; Shukla, V. K.; Singh, R. Metal Oxides Nanoparticles via sol–gel Method: a Review on Synthesis, Characterization and Applications. J. Mater. Sci.: Mater. Electron. 2020, 31 (5), 3729–3749; https://doi.org/10.1007/s10854-020-02994-8.Suche in Google Scholar

79. Das, S.; Srivasatava, V. C. Synthesis and Characterization of ZnO–MgO Nanocomposite by co-precipitation Method. Smart Sci. 2016, 4 (4), 190–195; https://doi.org/10.1080/23080477.2016.1260425.Suche in Google Scholar

80. Pérez-Tijerina, E.; Pinilla, M. G.; Mejía-Rosales, S.; Ortiz-Méndez, U.; Torres, A.; José-Yacamán, M. Highly size-controlled Synthesis of Au/Pd Nanoparticles by inert-gas Condensation. Faraday Discuss. 2008, 138, 353–362; https://doi.org/10.1039/b705913m.Suche in Google Scholar PubMed

81. Banerjee, A. N.; Krishna, R.; Das, B. Size Controlled Deposition of Cu and Si nano-clusters by an Ultra-high Vacuum Sputtering Gas Aggregation Technique. Appl. Phys. A 2008, 90, 299–303; https://doi.org/10.1007/s00339-007-4271-7.Suche in Google Scholar

82. Nirmala, C.; Bajwa, H. K.; Oinam, S. Bamboo Mediated Green Synthesis of Silver nanoparticles-A New Approach Towards Utilization of an Underutilized Plant. Adv. Bamboo Sci. 2024, 6, 100061; https://doi.org/10.1016/j.bamboo.2024.100061.Suche in Google Scholar

83. Kumari, S. C.; Dhand, V.; Padma, P. N. Green Synthesis of Metallic Nanoparticles: a Review. Nanomaterials 2021, 259–281; https://doi.org/10.1016/b978-0-12-822401-4.00022-2.Suche in Google Scholar

84. Patra, J. K.; Baek, K. H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014 (1), 417305; https://doi.org/10.1155/2014/417305.Suche in Google Scholar

85. Malhotra, S. P. K.; Alghuthaymi, M. A. Biomolecule-Assisted Biogenic Synthesis of Metallic Nanoparticles. Agri-waste Microb. Prod. Sustain. Nanomater. 2022, 139–163; https://doi.org/10.1016/b978-0-12-823575-1.00011-1.Suche in Google Scholar

Received: 2025-07-11
Accepted: 2025-07-15
Published Online: 2025-08-04
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0098/pdf?lang=de
Button zum nach oben scrollen