Abstract
Nanotechnology has revolutionized material science by enabling the manipulation of matter at the atomic and molecular scale. This review presents an in-depth analysis of nanoparticles (NPs), highlighting their classification into carbon-based, lipid-based, polymeric, metal, semiconductor, and ceramic types. It explores the physical and chemical uniqueness of nanomaterials, such as high surface-area-to-volume ratios and quantum effects, which empower their enhanced performance across domains. Emphasis is placed on synthesis strategies, including both top-down and bottom-up approaches, with a special focus on green and sustainable methods utilizing plant extracts and biological organisms. Furthermore, this review discusses wide-ranging applications of NPs in environmental remediation, medicine, electronics, mechanical systems, and energy harvesting. The potential of nanoparticles to offer targeted drug delivery, water purification, lightweight electronics, and energy-efficient systems makes them vital for future innovations. Challenges and perspectives on the scalability and safe deployment of nanomaterials are also briefly addressed.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Lin, H. Y.; Nurunnabi, M.; Chen, W. H.; Huang, C. H. Graphene in Neuroscience. In Biomedical Applications of Graphene and 2D Nanomaterials; Elsevier: Amsterdam, 2019; pp 337–351.10.1016/B978-0-12-815889-0.00016-7Search in Google Scholar
2. Deshmukh, M. A.; Kang, B. C.; Jeon, J. Y.; Ha, T. J. Stable Dispersions of single-wall Carbon Nanotubes Using self-assembled Amphiphilic Copolymer Surfactants for Fabricating Wafer-Scale Devices. ACS Appl. Nano Mater. 2020, 3 (9), 8829–8839; https://doi.org/10.1021/acsanm.0c01616.Search in Google Scholar
3. Ayanda, O. S.; Mmuoegbulam, A. O.; Okezie, O.; Durumin Iya, N. I.; Mohammed, S. A. E.; James, P. H.; Muhammad, A. B.; Unimke, A. A.; Alim, S. A.; Yahaya, S. M.; Ojo, A.; Adaramoye, T. O.; Ekundayo, S. K.; Abdullahi, A.; Badamasi, H. Recent Progress in Carbon-based Nanomaterials: Critical Review. J. Nanopart. Res. 2024, 26 (5), 106; https://doi.org/10.1007/s11051-024-06006-2.Search in Google Scholar
4. Davidraj, J. M.; Sathish, C. I.; Benzigar, M. R.; Li, Z.; Zhang, X.; Bahadur, R.; Ramadass, K.; Singh, G.; Yi, J.; Kumar, P.; Vinu, A. Recent Advances in Food Waste-Derived Nanoporous Carbon for Energy Storage. Sci. Technol. Adv. Mater. 2024, 25 (1), 2357062; https://doi.org/10.1080/14686996.2024.2357062.Search in Google Scholar PubMed PubMed Central
5. Cho, G. Printed Carbon Nanotube Based Transistors as Water Quality Sensors. Doctoral Dissertation, Institut Polytechnique de Paris, Paris, 2021.Search in Google Scholar
6. Trong Tam, N.; Viet Phuong, N.; Hong Khoi, P.; Ngoc Minh, P.; Afrand, M.; Van Trinh, P.; Hung Thang, B.; Żyła, G.; Estellé, P.; Estellé, P. Carbon Nanomaterial-based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials 2020, 10 (6), 1199; https://doi.org/10.3390/nano10061199.Search in Google Scholar PubMed PubMed Central
7. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12 (7), 908–931; https://doi.org/10.1016/j.arabjc.2017.05.011.Search in Google Scholar
8. García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J. M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials 2019, 9 (4), 638; https://doi.org/10.3390/nano9040638.Search in Google Scholar PubMed PubMed Central
9. Ozpolat, B.; Sood, A. K.; Lopez-Berestein, G. Liposomal siRNA Nanocarriers for Cancer Therapy. Adv. Drug Deliv. Rev. 2014, 66, 110–116; https://doi.org/10.1016/j.addr.2013.12.008.Search in Google Scholar PubMed PubMed Central
10. Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor Quantum Dots and Metal Nanoparticles: Syntheses, Optical Properties, and Biological Applications. Anal. Bioanal. Chem. 2008, 391, 2469–2495; https://doi.org/10.1007/s00216-008-2185-7.Search in Google Scholar PubMed
11. Nayak, M. K.; Singh, J.; Singh, B.; Soni, S.; Pandey, V. S.; Tyagi, S. Introduction to Semiconductor Nanomaterial and Its Optical and Electronics Properties. In Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications; Elsevier: Amsterdam, 2017; pp 1–33.10.1016/B978-0-323-44922-9.00001-6Search in Google Scholar
12. Majumder, M. K.; Kumbhare, V. R.; Japa, A.; Kaushik, B. K. Introduction to Microelectronics to Nanoelectronics: Design and Technology; CRC Press: Boca Raton, FL, 2020.10.1201/9781003049203Search in Google Scholar
13. Duncan, R.; Vicent, M. J. Polymer Therapeutics-Prospects for 21st Century: the End of the Beginning. Adv. Drug Deliv. Rev. 2013, 65 (1), 60–70; https://doi.org/10.1016/j.addr.2012.08.012.Search in Google Scholar PubMed
14. Carreiró, F.; Oliveira, A. M.; Neves, A.; Pires, B.; Nagasamy Venkatesh, D.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A. M.; Santini, A.; Souto, E. B. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25 (3731); https://doi.org/10.3390/molecules25163731.Search in Google Scholar PubMed PubMed Central
15. Schaffazick, S. R.; Pohlmann, A. R.; Dalla-Costa, T.; Guterres, S. S. Freeze-Drying Polymeric Colloidal Suspensions: Nanocapsules, Nanospheres and Nanodispersion. A Comparative Study. Eur. J. Pharm. Biopharm. 2003, 56 (3), 501–505. https://doi.org/10.1016/s0939-6411(03)00139-5.Search in Google Scholar PubMed
16. Guterres, S. S.; Alves, M. P.; Pohlmann, A. R. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications. Drug Target Insights 2007, 2, 117739280700200002; https://doi.org/10.1177/117739280700200002.Search in Google Scholar
17. Mallakpour, S.; Behranvand, V. J. E. P. L. Polymeric Nanoparticles: Recent Development in Synthesis and Application. Express Polym. Lett. 2016, 10 (11), 895; https://doi.org/10.3144/expresspolymlett.2016.84.Search in Google Scholar
18. Cano, A.; Sánchez-López, E.; Ettcheto, M.; Lopez-Machado, A.; Espina, M.; Souto, E. B.; Galindo, R.; Camins, A.; García, M. L.; Turowski, P. Current Advances in the Development of Novel Polymeric Nanoparticles for the Treatment of Neurodegenerative Diseases. Nanomedicine 2020, 15 (12), 1239–1261; https://doi.org/10.2217/nnm-2019-0443.Search in Google Scholar PubMed
19. Yang, N.; WeiHong, L.; Hao, L. Biosynthesis of Au Nanoparticles Using Agricultural Waste Mango Peel Extract and Its in Vitro Cytotoxic Effect on Two Normal Cells. Mater. Lett. 2014, 134, 67–70; https://doi.org/10.1016/j.matlet.2014.07.025.Search in Google Scholar
20. Kodintcev, A. N. Characterization and Potential Applications of Silver Nanoparticles: an Insight on Different Mechanisms. Chim. Techno Acta 2022, 9 (4); https://doi.org/10.15826/chimtech.2022.9.4.02.Search in Google Scholar
21. Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9 (6), 385–406.Search in Google Scholar
22. Gupta, R.; Xie, H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J. Enviro. Pathol. Toxicol. Oncol. 2018, 37 (3); https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018026009.Search in Google Scholar
23. Vijayakumar, M.; Priya, K.; Nancy, F. T.; Noorlidah, A.; Ahmed, A. B. A. Biosynthesis, Characterisation and Anti-bacterial Effect of plant-mediated Silver Nanoparticles Using Artemisia nilagirica. Ind. Crop. Prod. 2013, 41, 235–240; https://doi.org/10.1016/j.indcrop.2012.04.017.Search in Google Scholar
24. Bhattacharya, R.; Mukherjee, P. Biological Properties of “Naked” Metal Nanoparticles. Adv. Drug Deliv. Rev. 2008, 60 (11), 1289–1306; https://doi.org/10.1016/j.addr.2008.03.013.Search in Google Scholar PubMed
25. Puvanakrishnan, P.; Park, J.; Chatterjee, D.; Krishnan, S.; Tunnell, J. W. In Vivo Tumor Targeting of Gold Nanoparticles: Effect of Particle Type and Dosing Strategy. Int. J. Nanomed. 2012, 1251–1258; https://doi.org/10.2147/ijn.s29147.Search in Google Scholar PubMed PubMed Central
26. Belyakov, A. V. Introduction of Nanomaterials and Nanotechnologies in Ceramics Plants. Glass Ceram. 2010, 67, 203–208; https://doi.org/10.1007/s10717-010-9263-y.Search in Google Scholar
27. Baeza, A. Ceramic Nanoparticles for Cancer Treatment. Bio‐Ceram. Clin. Appl. 2014, 421–455; https://doi.org/10.1002/9781118406748.ch14.Search in Google Scholar
28. D’Amato, R.; Falconieri, M.; Gagliardi, S.; Popovici, E.; Serra, E.; Terranova, G.; Borsella, E. Synthesis of Ceramic Nanoparticles by Laser Pyrolysis: from Research to Applications. J. Anal. Appl. Pyrolysis 2013, 104, 461–469; https://doi.org/10.1016/j.jaap.2013.05.026.Search in Google Scholar
29. American Chemical Society. Frontiers in Nucleic Acids; ACS: Indianapolis, IN, 2011.Search in Google Scholar
30. Alagumalai, A.; Mahian, O.; Hollmann, F.; Zhang, W. Environmentally Benign Solid Catalysts for Sustainable Biodiesel Production: a Critical Review. Sci. Total Environ. 2021, 768, 144856; https://doi.org/10.1016/j.scitotenv.2020.144856.Search in Google Scholar PubMed
31. Fereidoun, H.; Nourddin, M. S.; Rreza, N. A.; Mohsen, A.; Ahmad, R.; Pouria, H. The Effect of long-term Exposure to Particulate Pollution on the Lung Function of Teheranian and Zanjanian Students. Pakistan J. Physiol. 2007, 3 (2).Search in Google Scholar
32. Fotiou, T.; Triantis, T. M.; Kaloudis, T.; O’Shea, K. E.; Dionysiou, D. D.; Hiskia, A. Assessment of the Roles of Reactive Oxygen Species in the UV and Visible Light Photocatalytic Degradation of Cyanotoxins and Water Taste and Odor Compounds Using C–TiO2. Water Res. 2016, 90, 52–61; https://doi.org/10.1016/j.watres.2015.12.006.Search in Google Scholar PubMed
33. Glenn, J. C. Nanotechnology: Future Military Environmental Health Considerations. Technol. Forecast. Soc. Change 2006, 73 (2), 128–137; https://doi.org/10.1016/j.techfore.2005.06.010.Search in Google Scholar
34. Dong, J.; Xu, W.; Liu, S.; Du, L.; Chen, Q.; Yang, T.; Gong, Y.; Li, M.; Tan, X.; Liu, Y. Recent Advances in Applications of Nonradical Oxidation in Water Treatment: Mechanisms, Catalysts and Environmental Effects. J. Clean. Prod. 2021, 321, 128781; https://doi.org/10.1016/j.jclepro.2021.128781.Search in Google Scholar
35. de Vidales, M. J. M.; Nieto-Márquez, A.; Morcuende, D.; Atanes, E.; Blaya, F.; Soriano, E.; Fernández-Martínez, F. 3D Printed Floating Photocatalysts for Wastewater Treatment. Catal. Today 2019, 328, 157–163; https://doi.org/10.1016/j.cattod.2019.01.074.Search in Google Scholar
36. Karthigadevi, G.; Manikandan, S.; Karmegam, N.; Subbaiya, R.; Chozhavendhan, S.; Ravindran, B.; Chang, S. W.; Awasthi, M. K. RETRACTED: Chemico-Nanotreatment Methods for the Removal of Persistent Organic Pollutants and Xenobiotics in water–A Review. Bioresour. Technol. 2021, 324, 124678; https://doi.org/10.1016/j.biortech.2021.124678.Search in Google Scholar PubMed
37. Rikhtehgaran, S.; Lohrasebi, A. Water Desalination by a Designed Nanofilter of graphene-charged Carbon Nanotube: a Molecular Dynamics Study. Desalination 2015, 365, 176–181; https://doi.org/10.1016/j.desal.2015.02.040.Search in Google Scholar
38. Gao, B.; Liu, L.; Liu, J.; Yang, F. A photo-catalysis and Rotating nano-CaCO3 Dynamic Membrane System with Fe-ZnIn2S4 Efficiently Removes Halogenated Compounds in Water. Appl. Catal. B: Environ. 2013, 138, 62–69; https://doi.org/10.1016/j.apcatb.2013.02.023.Search in Google Scholar
39. Hosseini, M.; Haghighi, M.; Kahforoushan, D.; Zarrabi, M. Sono-Dispersion of Ceria and Palladium in Preparation and Characterization of Pd/Al2O3-clinoptilolite-CeO2 Nanocatalyst for Treatment of Polluted Air via Low Temperature VOC Oxidation. Process Saf. Environ. Prot. 2017, 106, 284–293; https://doi.org/10.1016/j.psep.2016.06.028.Search in Google Scholar
40. Raju, N. V.; Sunny, J. S.; Gideon, D. A.; Sukumar, K.; Riaz, S.; Nawaz, S.; Syed, A.; Eswaramoorthy, R.; Pankaj, P. K.; Parashar, A. Deciphering the Influence of Soil and Feed on the Nutritional Status of Ruminants in Rainfed Areas Using Metagenomic Analysis. J. King Saud Univ. Sci. 2023, 35 (4), 102601; https://doi.org/10.1016/j.jksus.2023.102601.Search in Google Scholar
41. Hanif, A.; Farooq, R.; Rehman, M. U.; Khan, R.; Majid, S.; Ganaie, M. A. Aptamer Based Nanobiosensors: Promising Healthcare Devices. Saudi Pharmaceut. J. 2019, 27 (3), 312–319; https://doi.org/10.1016/j.jsps.2018.11.013.Search in Google Scholar PubMed PubMed Central
42. Wang, A. Z.; Langer, R.; Farokhzad, O. C. Nanoparticle Delivery of Cancer Drugs. Ann. Rev. Med. 2012, 63 (1), 185–198; https://doi.org/10.1146/annurev-med-040210-162544.Search in Google Scholar PubMed
43. Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; Habtemariam, S.; Shin, H. S. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 1–33; https://doi.org/10.1186/s12951-018-0392-8.Search in Google Scholar PubMed PubMed Central
44. Chen, C.; Xing, G.; Wang, J.; Zhao, Y.; Li, B.; Tang, J.; Jia, G.; Wang, T.; Sun, J.; Xing, L.; Yuan, H.; Gao, Y.; Meng, H.; Chen, Z.; Zhao, F.; Chai, Z.; Fang, X. Multihydroxylated [Gd@ C82 (OH) 22] N Nanoparticles: Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Lett. 2005, 5 (10), 2050–2057; https://doi.org/10.1021/nl051624b.Search in Google Scholar PubMed
45. Balzani, V. Nanoscience and Nanotechnology: a Personal View of a Chemist. Small 2005, 1 (3), 278–283; https://doi.org/10.1002/smll.200400010.Search in Google Scholar PubMed
46. Lugani, Y.; Kaur, G.; Oberoi, S.; Sooch, B. S. Nanotechnology: Current Applications and Future Prospects. World J. Adv. Health Care Res. 2018, 2, 137–139.Search in Google Scholar
47. Lo Nigro, R.; Fiorenza, P.; Greco, G.; Schilirò, E.; Roccaforte, F. Structural and Insulating Behaviour of high-permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices. Materials 2022, 15 (3), 830; https://doi.org/10.3390/ma15030830.Search in Google Scholar PubMed PubMed Central
48. Kosmala, A.; Wright, R.; Zhang, Q.; Kirby, P. Synthesis of Silver Nano Particles and Fabrication of Aqueous Ag Inks for Inkjet Printing. Mater. Chem. Phys. 2011, 129 (3), 1075–1080; https://doi.org/10.1016/j.matchemphys.2011.05.064.Search in Google Scholar
49. Kandil, M. The Role of Nanotechnology in Electronic Properties of Materials; Springer: ENRRA, Cairo, 2016.Search in Google Scholar
50. Mishra Sunil, B.; Liyakat, K. S. S.; Liyakat, K. K. S. Nanotechnology’s Importance in Mechanical Engineering. Development 2024, 4, 5.Search in Google Scholar
51. Kot, M.; Major, Ł.; Lackner, J. M.; Chronowska-Przywara, K.; Janusz, M.; Rakowski, W. Mechanical and Tribological Properties of Carbon‐Based Graded Coatings. J. Nanomater. 2016, 2016 (1), 8306345; https://doi.org/10.1155/2016/8306345.Search in Google Scholar
52. Guo, D.; Xie, G.; Luo, J. Mechanical Properties of Nanoparticles: Basics and Applications. J. Phys. D: Appl. Phys. 2013, 47 (1), 013001; https://doi.org/10.1088/0022-3727/47/1/013001.Search in Google Scholar
53. Tondan, H.; Singh, A. K. Advances in Energy Harvesting and Storage Materials: Unlocking the Potential of solid-state Nanomaterials for Renewable Energy Technologies. In Futuristic Trends in Physical Sciences (Vol. 3, Book 4); Iterative International Publishers: Chikkamagaluru; Selfypage Developers Pvt Ltd, 2024, pp. 21–32. ISBN 978-93-5747-671-3.10.58532/V3BKPS4P1CH2Search in Google Scholar
54. Avasare, V.; Zhang, Z.; Avasare, D.; Khan, I.; Qurashi, A. Room‐Temperature Synthesis of TiO2 Nanospheres and Their Solar Driven Photoelectrochemical Hydrogen Production. Int. J. Energy Res. 2015, 39 (12), 1714–1719; https://doi.org/10.1002/er.3372.Search in Google Scholar
55. Greeley, J.; Markovic, N. M. The Road from Animal Electricity to Green Energy: Combining Experiment and Theory in Electrocatalysis. Energy Environ. Sci. 2012, 5 (11), 9246–9256; https://doi.org/10.1039/c2ee21754f.Search in Google Scholar
56. Wang, Y.; Xia, Y. Bottom-up and top-down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-point Metals. Nano Lett. 2004, 4 (10), 2047–2050; https://doi.org/10.1021/nl048689j.Search in Google Scholar
57. Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: a Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2 (6), 1821–1871; https://doi.org/10.1039/d0ma00807a.Search in Google Scholar
58. Gorrasi, G.; Sorrentino, A. Mechanical Milling as a Technology to Produce Structural and Functional bio-nanocomposites. Green Chem. 2015, 17 (5), 2610–2625; https://doi.org/10.1039/c5gc00029g.Search in Google Scholar
59. Yadav, T. P.; Yadav, R. M.; Singh, D. P. Mechanical Milling: a Top down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanosci. Nanotechnol. 2012, 2 (3), 22–48; https://doi.org/10.5923/j.nn.20120203.01.Search in Google Scholar
60. Ostermann, R.; Cravillon, J.; Weidmann, C.; Wiebcke, M.; Smarsly, B. M. Metal–Organic Framework Nanofibers via Electrospinning. Chem. Commun. 2011, 47 (1), 442–444; https://doi.org/10.1039/c0cc02271c.Search in Google Scholar PubMed
61. Chronakis, I. S. Micro-/nano-fibers by Electrospinning Technology: Processing, Properties and Applications. Micromanuf. Eng. Technol. 2010, 2010, 264–286.10.1016/B978-0-8155-1545-6.00016-8Search in Google Scholar
62. Du, P.; Song, L.; Xiong, J.; Li, N.; Xi, Z.; Wang, L.; Jin, D.; Guo, S.; Yuan, Y. Coaxial Electrospun TiO2/ZnO core–sheath Nanofibers Film: Novel Structure for Photoanode of dye-sensitized Solar Cells. Electrochim. Acta 2012, 78, 392–397; https://doi.org/10.1016/j.electacta.2012.06.034.Search in Google Scholar
63. Tran, V.; Wen, X. Rapid Prototyping Technologies for Tissue Regeneration. Rapid prototyp. Biomater. 2014, 97–155; https://doi.org/10.1533/9780857097217.97.Search in Google Scholar
64. Amendola, V.; Meneghetti, M. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Phys. Chem. Chem. Phys. 2009, 11 (20), 3805–3821; https://doi.org/10.1039/b900654k.Search in Google Scholar PubMed
65. Su, S. S.; Chang, I. Review of Production Routes of Nanomaterials. Commer. Nanotechnol. Case Study Approach 2017, 15–29. https://doi.org/10.1007/978-3-319-56979-6_2.Search in Google Scholar
66. Behrisch, R. Sputtering by Particle Bombardment I; Springer: Boston, MA, Vol. 47, 1981.10.1007/3-540-10521-2Search in Google Scholar
67. Muñoz-García, J.; Vázquez, L.; Cuerno, R.; Sánchez-García, J. A.; Castro, M.; Gago, R. Self-Organized Surface Nanopatterning by Ion Beam Sputtering. Toward Funct. Nanomater. 2009, 323–398. https://doi.org/10.1007/978-0-387-77717-7_10.Search in Google Scholar
68. Joh, D. W.; Jung, T. K.; Lee, H. S.; Kim, D. H. Synthesis of Nanoparticles Using Electrical Explosion of Ni Wire in Pt Solution. J. Nanosci. Nanotechnol. 2013, 13 (9), 6092–6094; https://doi.org/10.1166/jnn.2013.7677.Search in Google Scholar PubMed
69. Kotov, Y. A. The Electrical Explosion of Wire: a Method for the Synthesis of Weakly Aggregated Nanopowders. Nanotechnol. Russ. 2009, 4 (7), 415–424; https://doi.org/10.1134/s1995078009070039.Search in Google Scholar
70. Zheng, Z.; Zhang, X.; Carbo, D.; Clark, C.; Nathan, C. A.; Lvov, Y. Sonication-Assisted Synthesis of polyelectrolyte-coated Curcumin Nanoparticles. Langmuir 2010, 26 (11), 7679–7681; https://doi.org/10.1021/la101246a.Search in Google Scholar PubMed PubMed Central
71. Ali Dheyab, M.; Aziz, A. A.; Jameel, M. S. Recent Advances in Inorganic Nanomaterials Synthesis Using Sonochemistry: a Comprehensive Review on Iron Oxide, Gold and Iron Oxide Coated Gold Nanoparticles. Molecules 2021, 26 (9), 2453; https://doi.org/10.3390/molecules26092453.Search in Google Scholar PubMed PubMed Central
72. Pimpin, A.; Srituravanich, W. Review on Micro-and Nanolithography Techniques and Their Applications. Eng. J. 2012, 16 (1), 37–56; https://doi.org/10.4186/ej.2012.16.1.37.Search in Google Scholar
73. Brady, B.; Wang, P. H.; Steenhoff, V.; Brolo, A. G. Nanostructuring Solar Cells Using Metallic Nanoparticles. In Metal Nanostructures for Photonics; Elsevier: Amsterdam, 2019; pp 197–221.10.1016/B978-0-08-102378-5.00009-XSearch in Google Scholar
74. Dikusar, A. I.; Globa, P. G.; Belevskii, S. S.; Sidel’nikova, S. P. On Limiting Rate of Dimensional Electrodeposition at Meso-and Nanomaterial Manufacturing by Template Synthesis. Surface Eng. Appl. Electrochem. 2009, 45, 171–179; https://doi.org/10.3103/s1068375509030016.Search in Google Scholar
75. Ago, H. CVD Growth of high-quality single-layer Graphene. Front. Graphene Carbon Nanotubes: Dev. Appl. 2015, 3–20. https://doi.org/10.1007/978-4-431-55372-4_1.Search in Google Scholar
76. Machac, P.; Cichon, S.; Lapcak, L.; Fekete, L. Graphene Prepared by Chemical Vapour Deposition Process. Graphene Technol. 2020, 5, 9–17; https://doi.org/10.1007/s41127-019-00029-6.Search in Google Scholar
77. Patil, N.; Bhaskar, R.; Vyavhare, V.; Dhadge, R.; Khaire, V.; Patil, Y. Overview on Methods of Synthesis of Nanoparticles. Int. J. Curr. Pharmaceut. Res. 2021, 13 (2), 11–16; https://doi.org/10.22159/ijcpr.2021v13i2.41556.Search in Google Scholar
78. Parashar, M.; Shukla, V. K.; Singh, R. Metal Oxides Nanoparticles via sol–gel Method: a Review on Synthesis, Characterization and Applications. J. Mater. Sci.: Mater. Electron. 2020, 31 (5), 3729–3749; https://doi.org/10.1007/s10854-020-02994-8.Search in Google Scholar
79. Das, S.; Srivasatava, V. C. Synthesis and Characterization of ZnO–MgO Nanocomposite by co-precipitation Method. Smart Sci. 2016, 4 (4), 190–195; https://doi.org/10.1080/23080477.2016.1260425.Search in Google Scholar
80. Pérez-Tijerina, E.; Pinilla, M. G.; Mejía-Rosales, S.; Ortiz-Méndez, U.; Torres, A.; José-Yacamán, M. Highly size-controlled Synthesis of Au/Pd Nanoparticles by inert-gas Condensation. Faraday Discuss. 2008, 138, 353–362; https://doi.org/10.1039/b705913m.Search in Google Scholar PubMed
81. Banerjee, A. N.; Krishna, R.; Das, B. Size Controlled Deposition of Cu and Si nano-clusters by an Ultra-high Vacuum Sputtering Gas Aggregation Technique. Appl. Phys. A 2008, 90, 299–303; https://doi.org/10.1007/s00339-007-4271-7.Search in Google Scholar
82. Nirmala, C.; Bajwa, H. K.; Oinam, S. Bamboo Mediated Green Synthesis of Silver nanoparticles-A New Approach Towards Utilization of an Underutilized Plant. Adv. Bamboo Sci. 2024, 6, 100061; https://doi.org/10.1016/j.bamboo.2024.100061.Search in Google Scholar
83. Kumari, S. C.; Dhand, V.; Padma, P. N. Green Synthesis of Metallic Nanoparticles: a Review. Nanomaterials 2021, 259–281; https://doi.org/10.1016/b978-0-12-822401-4.00022-2.Search in Google Scholar
84. Patra, J. K.; Baek, K. H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014 (1), 417305; https://doi.org/10.1155/2014/417305.Search in Google Scholar
85. Malhotra, S. P. K.; Alghuthaymi, M. A. Biomolecule-Assisted Biogenic Synthesis of Metallic Nanoparticles. Agri-waste Microb. Prod. Sustain. Nanomater. 2022, 139–163; https://doi.org/10.1016/b978-0-12-823575-1.00011-1.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers
Articles in the same Issue
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers