Home Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment
Article
Licensed
Unlicensed Requires Authentication

Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment

  • Vasumathi Gopala Prabitha , Jhelai Sahadevan ORCID logo EMAIL logo , Esakki Muthu Sankaran , Mashooq Ahmad Bhat , Narayanan Girija Nisha ORCID logo , Arangarajan Viji and Ikhyun Kim EMAIL logo
Published/Copyright: July 16, 2024

Abstract

Remediating water contamination greatly benefits from the removal of chemical as well as microbiological contaminants using the same substance. Yttrium-doped Lanthanum Titanate (LaY x Ti1−x O3, where x = 0 (LTO) and 0.05 (LYTO)) nanoparticles (NPs) synthesized by the auto-combustion method were already proven to have better antibacterial activities. The current study aims to investigate the photocatalytic degradation efficiency of the same sample for the organic pollutant Methylene Blue (MB) dye. Here, two vital and decisive characterization methods were employed: Raman spectroscopy for chemical and morphological features and X-ray photoelectron spectroscopy (XPS) for surface phase identification. The oxidation states of La3+ and Ti3+ ions have been deduced using XPS. The HRTEM reveals the nano-structure with SAED pattern is supporting with XRD data. LaTiO3 (LTO) and LaY0.05Ti0.95O3 (LYTO) nanoparticles showed degradation efficiencies of 40.26 % and 86.24 %, respectively, at degrading methylene blue (MB) dye after a reaction time of 90 min. The degradation efficiency of LTO increased to 87.19 % after a reaction time of 150 min. The introduction of yttrium doping into lithium titanate demonstrates promise as a material for mitigating water treatment, as it augments the material’s antibacterial and photocatalytic characteristics.


Corresponding authors: Jhelai Sahadevan, Centre for Energy and Environment, Department of Physics, Karpagam Academy of Higher Education, Coimbatore, 641021, India, E-mail: ; and Ikhyun Kim, Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea, E-mail:

Funding source: Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education

Award Identifier / Grant number: No.2020R1A6C101B189

Funding source: King Saud University, Riyadh

Award Identifier / Grant number: RSPD2024R740

Acknowledgments

This research was supported by Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2020R1A6C101B189). The authors Prabitha V G and Nisha N G acknowledge DST-FIST Instrumentation facility, Department of Physics, Government College for Women, Thiruvananthapuram. The authors extend their thanks to Researchers Supporting Project (Ref: RSPD2024R740), King Saud University, Riyadh, Saudia Arabia.

  1. Research ethics: Not applicable.

  2. Author contributions: V.G.P.: Formal analysis, data curation, conceptualization and writing-original draft; J.S.: Conceptualization, data Curation, formal analysis, supervision, writing-review and editing and proof reading; M.A.B.: Formal analysis, data curation, conceptualization and writing-review and editing; N.G.N.: formal analysis, data curation, conceptualization, validation, and editing; A.V.: formal analysis; E.M.S.: data curation, supervision, writing-review and editing, and project administration; I.K.: formal analysis. All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: This research was supported by Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2020R1A6C101B189). The authors extend their thanks to Researchers Supporting Project (Ref: RSPD2024R740), King Saud University, Riyadh, Saudia Arabia.

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Wasi, S.; Tabrez, S.; Ahmad, M. Toxicological Effects of Major Environmental Pollutants: An Overview. Environ. Monit. Assess. 2013, 185, 2585–2593; https://doi.org/10.1007/S10661-012-2732-8.Search in Google Scholar PubMed

2. Shittu, H. A.; Adedokun, O.; Kareem, M. A.; Sivaprakash, P.; Bello, I. T.; Arumugam, S. Effect of Low-Doping Concentration on Silver-Doped SnO2 and its Photocatalytic Applications. Biointerface Res. Appl. Chem. 2023, 13, 165; https://doi.org/10.33263/BRIAC132.165.Search in Google Scholar

3. Naseer, H.; Iqbal, T. Green Synthesis of Silver-doped Zinc Oxide Nanoparticles for Investigation of their Photocatalytic Activity and Shelf-life Applications. Biomass Conv. Bioref. 2023. https://doi.org/10.1007/s13399-023-04380-w.Search in Google Scholar

4. Aarthi, A.; Umadevi, M.; Parimaladevi, R.; Sathe, G. V.; Arumugam, S.; Sivaprakash, P. A Negatively Charged Hydrophobic Hemi-micelle of Fe3O4/Ag MNP Role Towards SERS, Photocatalysis and Bactericidal. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1469–1479; https://doi.org/10.1007/S10904-020-01802-4/METRICS.Search in Google Scholar

5. Bashir, I.; Lone, F. A.; Bhat, R. A.; Mir, S. A.; Dar, Z. A.; Dar, S. A. Concerns and Threats of Contamination on Aquatic Ecosystems. Int. J. Biodegrad. Bioremediat. 2020, 1–26; https://doi.org/10.1007/978-3-030-35691-0_1.Search in Google Scholar

6. Udhaya, P. A.; Ahmad, A.; Meena, M.; Queen, M. A. J.; Aravind, M.; Velusamy, P.; Almutairi, T. M.; Mohammed, A. A. A.; Ali, S. Copper Ferrite Nanoparticles Synthesised Using a Novel Green Synthesis Route: Structural Development and Photocatalytic Activity. J. Mol. Struct. 2023, 1277, 134807; https://doi.org/10.1016/J.MOLSTRUC.2022.134807.Search in Google Scholar

7. Ata, S.; Bano, S.; Bibi, I.; Alwadai, N.; ul Mohsin, I.; Al Huwayz, M.; Iqbal, M.; Nazir, A. Cationic Distributions and Dielectric Properties of Magnesium Ferrites Fabricated by Sol-Gel Route and Photocatalytic Activity Evaluation. Z. Phys. Chem. 2023, 237, 67–86; https://doi.org/10.1515/zpch-2022-0086.Search in Google Scholar

8. Velmurugan, G.; Ganapathi Raman, R.; Sivaprakash, P.; Viji, A.; Cho, S. H.; Kim, I. Functionalization of Fluorine on the Surface of SnO2–Mg Nanocomposite as an Efficient Photocatalyst for Toxic Dye Degradation. Nanomaterials 2023, 13, https://doi.org/10.3390/NANO13172494.Search in Google Scholar

9. Santos, G. A. C.; Dropa, M.; Rocha, S. M.; Peternella, F. A. S.; Razzolini, M. T. P. Staphylococcus Aureus and Methicillin-Resistant Staphylococcus Aureus (MRSA) in Drinking Water Fountains in Urban Parks. J Water Health 2020, 18, 654–664; https://doi.org/10.2166/WH.2020.042.Search in Google Scholar

10. Kristanti, R. A.; Hadibarata, T.; Syafrudin, M.; Yılmaz, M.; Abdullah, S. Microbiological Contaminants in Drinking Water: Current Status and Challenges. Water, Air, Soil Pollut. 2022, 233, 1–17; https://doi.org/10.1007/s11270-022-05698-3.Search in Google Scholar

11. Amalanathan, M.; Aravind, M.; Ahmed, N.; Sony Michel Mary, M.; Velusamy, P.; Kumaresubitha, T.; Noreen, R.; Ali, S. The Influence of Activated Carbon Annealing Temperature on Sunlight-Driven Photocatalytic Dye Degradation and Biological Activity. Inorg. Chem. Commun. 2022, 146, 110149; https://doi.org/10.1016/J.INOCHE.2022.110149.Search in Google Scholar

12. Velusamy, P.; Liu, X.; Sathiya, M.; Alsaiari, N. S.; Alzahrani, F. M.; Nazir, M. T.; Elamurugu, E.; Pandian, M. S.; Zhang, F. Investigate the Suitability of g-C3N4 Nanosheets Ornamented with BiOI Nanoflowers for Photocatalytic Dye Degradation and PEC Water Splitting. Chemosphere 2023, 321, 138007; https://doi.org/10.1016/J.CHEMOSPHERE.2023.138007.Search in Google Scholar

13. Yadav, H. M.; Kim, J. S.; Pawar, S. H. 2 - Metal Oxide-Based Composites: Synthesis and Characterization. Korean J. Chem. Eng. 2016, 33, 1989–1998; https://doi.org/10.1007/S11814-016-0118-2.Search in Google Scholar

14. Xu, Y.; Wen, W.; Wu, J. M. Titania Nanowires Functionalized Polyester Fabrics with Enhanced Photocatalytic and Antibacterial Performances. J. Hazard. Mater. 2018, 343, 285–297; https://doi.org/10.1016/J.JHAZMAT.2017.09.044.Search in Google Scholar

15. Panchal, P.; Paul, D. R.; Sharma, A.; Choudhary, P.; Meena, P.; Nehra, S. P. Biogenic Mediated Ag/ZnO Nanocomposites for Photocatalytic and Antibacterial Activities Towards Disinfection of Water. J. Colloid Interface Sci. 2020, 563, 370–380; https://doi.org/10.1016/J.JCIS.2019.12.079.Search in Google Scholar

16. Bibi, I.; Hussain, S.; Majid, F.; Kamal, S.; Ata, S.; Sultan, M.; Din, M. I.; Iqbal, M.; Nazir, A. Structural, Dielectric and Magnetic Studies of Perovskite [Gd1−xMxCrO3 (M = La, Co, Bi)] Nanoparticles: Photocatalytic Degradation of Dyes. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Search in Google Scholar

17. Nazir, A.; Khalid, F.; Rehman, S. U.; Sarwar, M.; Iqbal, M.; Yaseen, M.; Iftikhar Khan, M.; Abbas, M. Structural, Electric and Dielectric Properties of Perovskite-Based Nanoparticles for Energy Applications. Z. Phys. Chem. 2020, 000010151520191558; https://doi.org/10.1515/zpc-2019-1558.Search in Google Scholar

18. Sahadevan, J.; Sivaprakash, P.; Muthu, S. E.; Kim, I.; Padmanathan, N.; Eswaramoorthi, V. Influence of Te-Incorporated LaCoO3 on Structural, Morphology and Magnetic Properties for Multifunctional Device Applications. Int. J. Mol. Sci. 2023, 24, 10107; https://doi.org/10.3390/ijms241210107.Search in Google Scholar PubMed PubMed Central

19. Liang, H.; Hong, Y.; Zhu, C.; Li, S.; Chen, Y.; Liu, Z.; Ye, D. Influence of Partial Mn-substitution on Surface Oxygen Species of LaCoO3 Catalysts Catal. Today 2013, 201, 98–102; https://doi.org/10.1016/j.cattod.2012.04.036.Search in Google Scholar

20. Sahadevan, J.; Sanjay, R.; Esakki Muthu, S.; Kim, I.; Vivekananthan, V.; Ansar, S.; Sivaprakash, P. Investigation on Structural, Morphological and Magnetic Properties of Barium Cobaltite (BaCoO3) Nanoparticle. Mater. Sci. Eng. B. 2023, 296, 116669; https://doi.org/10.1016/j.mseb.2023.116669.Search in Google Scholar

21. Karami, M.; Ghanbari, M.; Amiri, O.; Salavati-Niasari, M. Enhanced Antibacterial Activity and Photocatalytic Degradation of Organic Dyes under Visible Light Using Cesium Lead Iodide Perovskite Nanostructures Prepared by Hydrothermal Method. Sep. Purif. Technol. 2020, 253, 117526; https://doi.org/10.1016/J.SEPPUR.2020.117526.Search in Google Scholar

22. Wang, C.; Zhang, Y.; Liu, Y.; Chen, Q.; Song, Y.; Cai, A.; Guo, H.; Zhang, P. Photocatalytic and Antibacterial Properties of NaTaO3 Nanofilms Doping with Mg2+, Ca2+ and Sr2+. Appl. Surf. Sci. 2023, 612, 155881; https://doi.org/10.1016/J.APSUSC.2022.155881.Search in Google Scholar

23. Humayun, M.; Ullah, H.; Usman, M.; Habibi-Yangjeh, A.; Tahir, A. A.; Wang, C.; Luo, W. Perovskite-type Lanthanum Ferrite Based Photocatalysts: Preparation, Properties, and Applications. J. Energy Chem. 2022, 66, 314–338; https://doi.org/10.1016/J.JECHEM.2021.08.023.Search in Google Scholar

24. Singh, C.; Wagle, A.; Rakesh, M. Doped LaCoO3 Perovskite with Fe: A Catalyst with Potential Antibacterial Activity. Vacuum 2017, 146, 468–473; https://doi.org/10.1016/J.VACUUM.2017.06.039.Search in Google Scholar

25. Prabitha, V. G.; Sahadevan, J.; Madhavan, M.; Muthu, S. E.; Kim, I.; Sudheer, T. K.; Sivaprakash, P. Effect of Yttrium Doping on Antibacterial and Antioxidant Property of LaTiO3. Discover Nano 2023, 18, 1–12; https://doi.org/10.1186/s11671-023-03942-1.Search in Google Scholar PubMed PubMed Central

26. Musadaq, Y. M.; Naji, G. A.-H.; Al-Deen, H. H. J. J. In Vitro Study for Yttrium addition on titanium - 15 Molybdenum after Immersion in Simulated Body Fluid. J Pharm Negat Results 2022, 13, 1905–1911; https://doi.org/10.47750/PNR.2022.13.S06.249.Search in Google Scholar

27. Park, K. J.; Kim, C. H.; Yoon, Y. J.; Song, S. M.; Kim, Y. T.; Hur, K. H. Doping Behaviors of Dysprosium, Ytrium and Holmium in BaTiO3 Ceramics. J. Eur. Ceram. Soc. 2009, 29, 1735–1741; https://doi.org/10.1016/J.JEURCERAMSOC.2008.10.021.Search in Google Scholar

28. Makovec, D.; Samardžija, Z.; Drofenik, M. Solid Solubility of Holmium, Yttrium, and Dysprosium in BaTiO3. J. Am. Ceram. Soc. 2004, 87, 1324–1329; https://doi.org/10.1111/J.1151-2916.2004.TB07729.X.Search in Google Scholar

29. Scalabrin, A.; Chaves, A. S.; Shim, D. S.; Porto, S. P. S. Temperature Dependence of the A1 and E Optical Phonons in BaTiO3. Physica Status Solidi(b) 1977, 79, 731–742; https://doi.org/10.1002/pssb.2220790240.Search in Google Scholar

30. Lukacs, V. A.; Airimioaei, M.; Padurariu, L.; Curecheriu, L. P.; Ciomaga, C. E.; Bencan, A.; Drazic, G.; Avakian, M.; Jones, J. L.; Stoian, G.; Deluca, M.; Brunner, R.; Rotaru, A.; Mitoseriu, L. Phase Coexistence and Grain Size Effects on the Functional Properties of BaTiO3 Ceramics. J. Eur. Ceram. Soc. 2022, 42, 2230–2247; https://doi.org/10.1016/j.jeurceramsoc.2021.12.024.Search in Google Scholar

31. Zhang, W.; Liu, Z.; Chen, P.; Zhou, G.; Liu, Z.; Xu, Y. Preparation of Supported Perovskite Catalyst to Purify Membrane Concentrate of Coal Chemical Wastewater in UV-Catalytic Wet Hydrogen Peroxide Oxidation System. Int. J. Environ. Res. Public Health 2021, 18, 4906; https://doi.org/10.3390/IJERPH18094906.Search in Google Scholar

32. Seim, H.; Nieminen, M.; Niinistö, L.; Fjellvåg, H.; Johansson, L. S. Growth of LaCoO3 Thin Films from β-diketonate Precursors. Appl. Surf. Sci. 1997, 112, 243–250; https://doi.org/10.1016/S0169-4332(96)01001-X.Search in Google Scholar

33. Jiang, X.; Dong, Y.; Zhang, Z.; Li, J.; Qian, J.; Gao, D. Cation Substitution of B-site in LaCoO3 for Bifunctional Oxygen Electrocatalytic Activities. J. Alloys Compd. 2021, 878, 160433; https://doi.org/10.1016/J.JALLCOM.2021.160433.Search in Google Scholar

34. Nashim, A.; Parida, K. n-La2Ti2O7/p-LaCrO3: A Novel Heterojunction-Based Composite Photocatalyst with Enhanced Photoactivity Towards Hydrogen Production. J Mater Chem A Mater 2014, 2, 18405–18412; https://doi.org/10.1039/C4TA02401J.Search in Google Scholar

35. Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maragno, C.; Tondello, E. LaCoO3 Nanosystems by a Hybrid CVD/Sol-Gel Route: An XPS Investigation. Surf. Sci. Spectra 2003, 10, 143–149; https://doi.org/10.1116/11.20040303.Search in Google Scholar

36. Mukhopadhyay, S. M.; Chen, T. C. S. Insights into Ferroelectric BaTiO3: Revealing Fundamental and Functional Aspects through Electron Spectroscopy. J. Mater. Res. 1995, 10, 1502–1507; https://doi.org/10.1557/JMR.1995.1502/METRICS.Search in Google Scholar

37. Mukhopadhyay, S. M.; Chen, T. C. S. Surface Properties of Perovskites and Their Response to Ion Bombardment. J. Appl. Phys. 1993, 74, 872–876; https://doi.org/10.1063/1.354880.Search in Google Scholar

38. Chakraborty, T.; Ray, S.; Itoh, M. Defect-Induced Magnetism: Test of Dilute Magnetism in Fe-Doped Hexagonal BaTiO3 Single Crystals. Phys Rev B Condens Matter Mater Phys. 2011, 83, 144407; https://doi.org/10.1103/PhysRevB.83.144407.Search in Google Scholar

39. Ray, S.; Sarma, D. D.; Vijayaraghavan, R. Electron-Spectroscopic Investigation of the Metal-Insulator Transition in Sr2 Ru1-xTixO4 (x=0 - 0.6). Phys Rev B Condens Matter Mater Phys. 2006, 73, 165105; https://doi.org/10.1103/PhysRevB.73.165105.Search in Google Scholar

40. Jou, J.-L.; Lei, C.-M.; Xu, Y.-W.; Yeh, V. W.-C. The Higher Energy Components in Ti2p Xps Spectrum of Ga Doped Barium Titanate. Chin. J. Phys. 2012, 50, 926–931; https://doi.org/10.6122/CJP.50.926.Search in Google Scholar

41. Idriss, H. On the Wrong Assignment of the XPS O1s Signal at 531–532 eV Attributed to Oxygen Vacancies in Photo- and Electro-Catalysts for Water Splitting and Other Materials Applications. Surf. Sci. 2021, 712, 121894; https://doi.org/10.1016/J.SUSC.2021.121894.Search in Google Scholar

42. Uwamino, Y.; Ishizuka, T.; Yamatera, H. X-ray Photoelectron Spectroscopy of Rare-Earth Compounds. J Electron Spectros Relat Phenomena 1984, 34, 67–78; https://doi.org/10.1016/0368-2048(84)80060-2.Search in Google Scholar

43. Gougousi, T.; Chen, Z. Deposition of Yttrium Oxide Thin Films in Supercritical Carbon Dioxide. Thin Solid Films 2007, 515, 6197–6204; https://doi.org/10.1016/j.tsf.2007.11.104.Search in Google Scholar

44. Liu, Q. X.; Zhou, Y. R.; Wang, M.; Zhang, Q.; Ji, T.; Chen, T. Y.; Yu, D. C. Adsorption of Methylene Blue From Aqueous Solution onto Viscose-Based Activated Carbon Fiber Felts: Kinetics and Equilibrium Studies. Adsorpt. Sci. Technol. 2019, 37, 312–332; https://doi.org/10.1177/0263617419827437.Search in Google Scholar

45. Liu, L.; He, D.; Pan, F.; Huang, R.; Lin, H.; Zhang, X. Comparative Study on Treatment of Methylene Blue Dye Wastewater by Different Internal Electrolysis Systems and COD Removal Kinetics, Thermodynamics and Mechanism. Chemosphere 2020, 238, 124671; https://doi.org/10.1016/J.CHEMOSPHERE.2019.124671.Search in Google Scholar PubMed

46. Ali, S.; Khan, S. A.; Khan, I.; Yamani, Z. H.; Sohail, M.; Morsy, M. A. Surfactant-Free Synthesis of Ellipsoidal and Spherical Shaped TiO2 Nanoparticles and Their Comparative Photocatalytic Studies. J. Environ. Chem. Eng. 2017, 5, 3956–3962; https://doi.org/10.1016/J.JECE.2017.07.066.Search in Google Scholar

47. Sahadevan, J.; Radhakrishnan, M.; Padmanathan, N.; Esakki Muthu, S.; Sivaprakash, P.; Kadiresan, M. Effect of Mn Substitution on Magnetic Behaviour of Oxygen Defective LaCoO3 Perovskite Oxide. Mater. Sci. Eng. B. 2022, 284, 115875; https://doi.org/10.1016/J.MSEB.2022.115875.Search in Google Scholar

48. Anushree, C.; Philip, J. Efficient Removal of Methylene Blue Dye Using Cellulose Capped Fe3O4 Nanofluids Prepared Using Oxidation-Precipitation Method. Colloids Surf., A 2019, 567, 193–204; https://doi.org/10.1016/J.COLSURFA.2019.01.057.Search in Google Scholar

49. Saeed, M.; Jamal, M. A.; Haq, A. U.; Ilyas, M.; Younas, M.; Shahzad, M. A. Oxidative Degradation of Methylene Blue in Aqueous Medium Catalyzed by Lab Prepared Nickel Hydroxide. Int. J. Chem. React. Eng. 2016, 14, 45–51; https://doi.org/10.1515/ijcre-2015-0088.Search in Google Scholar

50. Khan, I.; Sadiq, M.; Khan, I.; Saeed, K. Manganese Doxide Nanoparticles/Activated Carbon Composite as Efficient UV and Visible Light Photocatalyst. Environ. Sci. Pollut. Res. 2019, 26, 5140–5154; https://doi.org/10.1007/s11356-018-4055-y.Search in Google Scholar PubMed

Received: 2024-03-13
Accepted: 2024-06-19
Published Online: 2024-07-16
Published in Print: 2025-05-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0779/html?lang=en&srsltid=AfmBOopWKQKAhRKTh6183elNPO01ZzwMphMckWtTksVblCmZ6oTP24_N
Scroll to top button