Abstract
Amyloids are protein aggregates involved in various protein condensation diseases. Our study aims to investigate the influence of glycine on the fibrillization mechanism of β-lactoglobulin (BLG), a model protein known to form amyloid fibrils from hydrolysed peptides in low pH aqueous solutions. We conducted atomistic molecular dynamics simulations of aqueous solutions of native and unfolded BLG in glycine buffer at pH 2.0. During the simulations we put our focus on analysing protein-protein/buffer interactions, structural electrostatic potential mapping, and the residence times of glycine and glycinium near specific amino acid residues. Glycinium cations were found to preferentially interact with specific protein residues potentially masking the outer disulfide bonds, affecting thiol deprotonation and influencing disulfide scrambling equilibrium. These interactions can potentially hinder hydrolysis and change the fibrillization pathway. Further investigations, such as constant pH MD simulations, simulations on disulfide bounded oligomers are warranted to validate these findings and deepen our understanding of protein aggregation mechanisms.
Acknowledgments
The authors acknowledge the support from the National Institutes of Health (NIH) RM1 award “Solvation modeling for next-gen biomolecule simulations” (grant No. RM1GM135136).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: National Institutes of Health (NIH) RM1, grant No. RM1GM135136.
-
Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
1. Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-Based Therapy for Alzheimer’s Disease: Challenges, Successes and Future. Signal Transduct. Targeted Ther. 2023, 8 (1), 248. https://doi.org/10.1038/s41392-023-01484-7.Search in Google Scholar PubMed PubMed Central
2. Jaunmuktane, Z.; Mead, S.; Ellis, M.; Wadsworth, J. D. F.; Nicoll, A. J.; Kenny, J.; Launchbury, F.; Linehan, J.; Richard-Loendt, A.; Walker, A. S.; Rudge, P.; Collinge, J.; Brandner, S. Evidence for Human Transmission of Amyloid-β Pathology and Cerebral Amyloid Angiopathy. Nature 2015, 525 (7568), 247–250. https://doi.org/10.1038/nature15369.Search in Google Scholar PubMed
3. Tang, Y.; Zhang, D.; Zhang, Y.; Liu, Y.; Gong, X.; Chang, Y.; Ren, B.; Zheng, J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS Appl. Bio Mater. 2020, 3 (12), 8286–8308. https://doi.org/10.1021/acsabm.0c01234.Search in Google Scholar PubMed
4. Li, Y.; Yan, J.; Zhang, X.; Huang, K. Disulfide Bonds in Amyloidogenesis Diseases Related Proteins. Proteins Struct. Funct. Bioinf. 2013, 81 (11), 1862–1873. https://doi.org/10.1002/prot.24338.Search in Google Scholar PubMed
5. Al Hamed, R.; Bazarbachi, A. H.; Bazarbachi, A.; Malard, F.; Harousseau, J.-L.; Mohty, M. Comprehensive Review of Al Amyloidosis: Some Practical Recommendations. Blood Cancer J. 2021, 11 (5), 97. https://doi.org/10.1038/s41408-021-00486-4.Search in Google Scholar PubMed PubMed Central
6. Sawaya, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.; Wiltzius, J. J. W.; McFarlane, H. T.; Madsen, A. Ø.; Riekel, C.; Eisenberg, D. Atomic Structures of Amyloid Cross-β Spines Reveal Varied Steric Zippers. Nature 2007, 447 (7143), 453–457. https://doi.org/10.1038/nature05695.Search in Google Scholar PubMed
7. Fitzpatrick, A. W. P.; Debelouchina, G. T.; Bayro, M. J.; Clare, D. K.; Caporini, M. A.; Bajaj, V. S.; Jaroniec, C. P.; Wang, L.; Ladizhansky, V.; Müller, S. A.; MacPhee, C. E.; Waudby, C. A.; Mott, H. R.; De Simone, A.; Knowles, T. P. J.; Saibil, H. R.; Vendruscolo, M.; Orlova, E. V.; Griffin, R. G.; Dobson, C. M. Atomic Structure and Hierarchical Assembly of a Cross- Amyloid Fibril. Proc. Natl. Acad. Sci. 2013, 110 (14), 5468–5473. https://doi.org/10.1073/pnas.1219476110.Search in Google Scholar PubMed PubMed Central
8. Schleeger, M.; vandenAkker, C. C.; Deckert-Gaudig, T.; Deckert, V.; Velikov, K. P.; Koenderink, G.; Bonn, M. Amyloids: From Molecular Structure to Mechanical Properties. Polymer 2013, 54 (10), 2473–2488. https://doi.org/10.1016/j.polymer.2013.02.029.Search in Google Scholar
9. Otzen, D.; Riek, R. Functional Amyloids. Cold Spring Harbor Perspect. Biol. 2019, 11 (12). https://doi.org/10.1101/cshperspect.a033860.Search in Google Scholar PubMed PubMed Central
10. Li, J.; Zhang, F. Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int. J. Mol. Sci. 2021, 22 (19). https://doi.org/10.3390/ijms221910698.Search in Google Scholar PubMed PubMed Central
11. Sinnige, T. Molecular Mechanisms of Amyloid Formation in Living Systems. Chem. Sci. 2022, 13, 7080–7097. https://doi.org/10.1039/d2sc01278b.Search in Google Scholar PubMed PubMed Central
12. Loveday, S. M.; Anema, S. G.; Singh, H. β-Lactoglobulin Nanofibrils: The Long and the Short of it. Int. Dairy J. 2017, 67, 35–45. https://doi.org/10.1016/j.idairyj.2016.09.011.Search in Google Scholar
13. Cao, Y.; Mezzenga, R. Food Protein Amyloid Fibrils: Origin, Structure, Formation, Characterization, Applications and Health Implications. Adv. Colloid Interface Sci. 2019, 269, 334–356. https://doi.org/10.1016/j.cis.2019.05.002.Search in Google Scholar PubMed
14. Adamcik, J.; Mezzenga, R. Proteins Fibrils from a Polymer Physics Perspective. Macromolecules 2012, 45 (3), 1137–1150. https://doi.org/10.1021/ma202157h.Search in Google Scholar
15. Hoppenreijs, L. J. G.; Fitzner, L.; Ruhmlieb, T.; Heyn, T. R.; Schild, K.; van der Goot, A.-J.; Boom, R. M.; Steffen-Heins, A.; Schwarz, K.; Keppler, J. K. Engineering Amyloid and Amyloid-Like Morphologies of β-Lactoglobulin. Food Hydrocolloids 2022, 124, 107301. https://doi.org/10.1016/j.foodhyd.2021.107301.Search in Google Scholar
16. Ke, P. C.; Zhou, R.; Serpell, L. C.; Riek, R.; Knowles, T. P. J.; Lashuel, H. A.; Gazit, E.; Hamley, I. W.; Davis, T. P.; Fändrich, M.; Otzen, D. E.; Chapman, M. R.; Dobson, C. M.; Eisenberg, D. S.; Mezzenga, R. Half a Century of Amyloids: Past, Present and Future. Chem. Soc. Rev. 2020, 49, 5473–5509. https://doi.org/10.1039/c9cs00199a.Search in Google Scholar PubMed PubMed Central
17. Close, W.; Neumann, M.; Schmidt, A.; Hora, M.; Annamalai, K.; Schmidt, M.; Reif, B.; Schmidt, V.; Grigorieff, N.; Fändrich, M. Physical Basis of Amyloid Fibril Polymorphism. Nat. Commun. 2018, 9 (1), 699. https://doi.org/10.1038/s41467-018-03164-5.Search in Google Scholar PubMed PubMed Central
18. Barbiroli, A.; Iametti, S.; Bonomi, F. Beta-Lactoglobulin as a Model Food Protein: How to Promote, Prevent, and Exploit its Unfolding Processes. Molecules 2022, 27 (3). https://doi.org/10.3390/molecules27031131.Search in Google Scholar PubMed PubMed Central
19. Akkermans, C.; Venema, P.; Jan van der Goot, A.; Gruppen, H.; Bakx, E. J.; Boom, R. M.; van der Linden, E. Peptides Are Building Blocks of Heat-Induced Fibrillar Protein Aggregates of β-Lactoglobulin Formed at ph 2. Biomacromolecules 2008, 9 (5), 1474–1479. https://doi.org/10.1021/bm7014224.Search in Google Scholar PubMed
20. Oboroceanu, D.; Wang, L.; Brodkorb, A.; Magner, E.; Auty, M. A. E. Characterization of Beta-Lactoglobulin Fibrillar Assembly Using Atomic Force Microscopy, Polyacrylamide Gel Electrophoresis, and In Situ Fourier Transform Infrared Spectroscopy. J. Agric. Food Chem. 2010, 58 (6), 3667–3673. https://doi.org/10.1021/jf9042908.Search in Google Scholar PubMed
21. Loveday, S. M.; Wang, X. L.; Rao, M. A.; Anema, S. G.; Singh, H. -lactoglobulin Nanofibrils: Effect of Temperature on Fibril Formation Kinetics, Fibril Morphology and the Rheological Properties of Fibril Dispersions. Food Hydrocolloids 2012, 27 (1), 242–249. https://doi.org/10.1016/j.foodhyd.2011.07.001.Search in Google Scholar
22. Dave, A. C.; Loveday, S. M.; Anema, S. G.; Loo, T. S.; Norris, G. E.; Jameson, G. B.; Singh, H. β-Lactoglobulin Self-Assembly: Structural Changes in Early Stages and Disulfide Bonding in Fibrils. J. Agric. Food Chem. 2013, 61 (32), 7817–7828. https://doi.org/10.1021/jf401084f.Search in Google Scholar PubMed
23. Dave, A. C.; Loveday, S. M.; Anema, S. G.; Jameson, G. B.; Singh, H. Modulating β-Lactoglobulin Nanofibril Self-Assembly at ph 2 Using Glycerol and Sorbitol. Biomacromolecules 2013, 15 (1), 95–103. https://doi.org/10.1021/bm401315s.Search in Google Scholar PubMed
24. Heyn, T. R.; Mayer, J.; Neumann, H. R.; Selhuber-Unkel, C.; Kwade, A.; Schwarz, K.; Keppler, J. K. The Threshold of Amyloid Aggregation of Beta-Lactoglobulin: Relevant Factor Combinations. J. Food Eng. 2020, 283, 110005. https://doi.org/10.1016/j.jfoodeng.2020.110005.Search in Google Scholar
25. Adamcik, J.; Mezzenga, R. Adjustable Twisting Periodic Pitch of Amyloid Fibrils. Soft Matter 2011, 7, 5437–5443. https://doi.org/10.1039/c1sm05382e.Search in Google Scholar
26. Lara, C.; Adamcik, J.; Jordens, S.; Mezzenga, R. General Self-Assembly Mechanism Converting Hydrolyzed Globular Proteins into Giant Multistranded Amyloid Ribbons. Biomacromolecules 2011, 12 (5), 1868–1875. https://doi.org/10.1021/bm200216u.Search in Google Scholar PubMed
27. Reynolds, N. P.; Adamcik, J.; Berryman, J. T.; Handschin, S.; Zanjani, A. A. H.; Li, W.; Liu, K.; Zhang, A.; Mezzenga, R. Competition Between Crystal and Fibril Formation in Molecular Mutations of Amyloidogenic Peptides. Nat. Commun. 2017, 8 (1), 1338. https://doi.org/10.1038/s41467-017-01424-4.Search in Google Scholar PubMed PubMed Central
28. VandenAkker, C. C.; Schleeger, M.; Bruinen, A. L.; Deckert-Gaudig, T.; Velikov, K. P.; Heeren, R. M. A.; Deckert, V.; Bonn, M.; Koenderink, G. H. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. J. Phys. Chem. B 2016, 120 (34), 8809–8817. https://doi.org/10.1021/acs.jpcb.6b05339.Search in Google Scholar PubMed
29. Loveday, S. M.; Wang, X. L.; Rao, M. A.; Anema, S. G.; Creamer, L. K.; Singh, H. Tuning the Properties of β-Lactoglobulin Nanofibrils with Ph, Nacl and Cacl2. Int. Dairy J. 2010, 20 (9), 571–579. https://doi.org/10.1016/j.idairyj.2010.02.014.Search in Google Scholar
30. Zappone, B.; De Santo, M. P.; Labate, C.; Rizzuti, B.; Guzzi, R. Catalytic Activity of Copper Ions in the Amyloid Fibrillation of β-Lactoglobulin. Soft Matter 2013, 9, 2412–2419. https://doi.org/10.1039/c2sm27408f.Search in Google Scholar
31. Guzzi, R.; Rizzuti, B.; Labate, C.; Zappone, B.; De Santo, M. P. Ferric Ions Inhibit the Amyloid Fibrillation of β-Lactoglobulin at High Temperature. Biomacromolecules 2015, 16 (6), 1794–1801. https://doi.org/10.1021/acs.biomac.5b00371.Search in Google Scholar PubMed
32. Loveday, S. M.; Wang, X. L.; Rao, M. A.; Anema, S. G.; Singh, H. Effect of Ph, Nacl, Cacl2 and Temperature on Self-Assembly of β-Lactoglobulin into Nanofibrils: A Central Composite Design Study. J. Agric. Food Chem. 2011, 59 (15), 8467–8474. https://doi.org/10.1021/jf201870z.Search in Google Scholar PubMed
33. Gosal, W. S.; Clark, A. H.; Ross-Murphy, S. B. Fibrillar β-Lactoglobulin Gels: Part 1. Fibril Formation and Structure. Biomacromolecules 2004, 5 (6), 2408–2419. https://doi.org/10.1021/bm049659d.Search in Google Scholar PubMed
34. Hamada, D.; Dobson, C. M. A Kinetic Study of Beta-Lactoglobulin Amyloid Fibril Formation Promoted by Urea. Protein Sci. 2002, 11 (10), 2417–2426. https://doi.org/10.1110/ps.0217702.Search in Google Scholar PubMed PubMed Central
35. Rasmussen, P.; Barbiroli, A.; Bonomi, F.; Faoro, F.; Ferranti, P.; Iriti, M.; Picariello, G.; Iametti, S. Formation of Structured Polymers upon Controlled Denaturation of β-Lactoglobulin with Different Chaotropes. Biopolymers 2007, 86 (1), 57–72. https://doi.org/10.1002/bip.20704.Search in Google Scholar PubMed
36. Brudar, S.; Hribar-Lee, B. Effect of Buffer on Protein Stability in Aqueous Solutions: A Simple Protein Aggregation Model. J. Phys. Chem. B 2021, 125 (10), 2504–2512. https://doi.org/10.1021/acs.jpcb.0c10339.Search in Google Scholar PubMed PubMed Central
37. Ugwu, S. O.; Apte, S. The Effect of Buffers on Protein Conformational Stability. Pharm. Technol. 2004, 28, 86–108.Search in Google Scholar
38. Brudar, S.; Hribar-Lee, B. The Role of Buffers in Wild-Type HEWL Amyloid Fibril Formation Mechanism. Biomolecules 2019, 9 (2). https://doi.org/10.3390/biom9020065.Search in Google Scholar PubMed PubMed Central
39. Jaklin, M.; Hritz, J.; Hribar-Lee, B. A New Fibrillization Mechanism of β-Lactoglobulin in glycine Solutions. Int. J. Biol. Macromol. 2022, 216, 414–425. https://doi.org/10.1016/j.ijbiomac.2022.06.182.Search in Google Scholar PubMed PubMed Central
40. Wu, S.-Y.; Pérez, M. D.; Puyol, P.; Sawyer, L. β-Lactoglobulin Binds Palmitate within its Central Cavity*. J. Biol. Chem. 1999, 274 (1), 170–174. https://doi.org/10.1074/jbc.274.1.170.Search in Google Scholar PubMed
41. Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L. E.; Brookes, D. H.; Wilson, L.; Chen, J.; Liles, K.; Chun, M.; Li, P.; Gohara, D. W.; Dolinsky, T.; Konecny, R.; Koes, D. R.; Nielsen, J. E.; Head-Gordon, T.; Geng, W.; Krasny, R.; Wei, G.-W.; Holst, M. J.; McCammon, J. A.; Baker, N. A. Improvements to the APBS Biomolecular Solvation Software Suite. Protein Sci. 2018, 27 (1), 112–128. https://doi.org/10.1002/pro.3280.Search in Google Scholar PubMed PubMed Central
42. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. Gromacs: High Performance Molecular Simulations Through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001.Search in Google Scholar
43. Dodda, L. S.; Cabeza de Vaca, I.; Tirado-Rives, J.; Jorgensen, W. L. LigParGen Web Server: an Automatic OPLS-AA Parameter Generator for Organic Ligands. Nucleic Acids Res. 2017, 45 (W1), W331–W336. https://doi.org/10.1093/nar/gkx312.Search in Google Scholar PubMed PubMed Central
44. Robertson, M. J.; Tirado-Rives, J.; Jorgensen, W. L. Improved Peptide and Protein Torsional Energetics with the Opls-Aa Force Field. J. Chem. Theory Comput. 2015, 11 (7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356.Search in Google Scholar PubMed PubMed Central
45. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91 (24), 6269–6271. https://doi.org/10.1021/j100308a038.Search in Google Scholar
46. Mochizuki, K.; Sumi, T.; Koga, K. Liquid–Liquid Phase Separation of N-Isopropylpropionamide Aqueous Solutions above the Lower Critical Solution Temperature. Sci. Rep. 2016, 6 (1), 24657. https://doi.org/10.1038/srep24657.Search in Google Scholar PubMed PubMed Central
47. Mthembu, S. N.; Sharma, A.; Albericio, F.; de la Torre, B. G. Breaking a Couple: Disulfide Reducing Agents. Chembiochem 2020, 21 (14), 1947–1954. https://doi.org/10.1002/cbic.202000092.Search in Google Scholar PubMed
48. Martins de Oliveira, V.; Liu, R.; Shen, J. Constant Ph Molecular Dynamics Simulations: Current Status and Recent Applications. Curr. Opin. Struct. Biol. 2022, 77, 102498. https://doi.org/10.1016/j.sbi.2022.102498.Search in Google Scholar PubMed PubMed Central
49. da Rocha, L.; Baptista, A. M.; Campos, S. R. R. Approach to Study pH-Dependent Protein Association Using Constant-pH Molecular Dynamics: Application to the Dimerization of β-Lactoglobulin. J. Chem. Theory Comput. 2022, 18 (3), 1982–2001. https://doi.org/10.1021/acs.jctc.1c01187.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Preface
- Contribution to “From Nanostructure to Function”
- Temporal airy pulses efficiency in thin glass dicing
- Surface investigations of bronze and brass statuary monuments in open-air exposure
- Dual dynamic voltammetric study of the formation of ferrate ions during the electrochemical dissolution of white cast iron in the transpassive region
- Cetuximab-induced changes to tumor oral mucosa models probed by stimulated Raman spectromicroscopy
- From nanostructure to function: hierarchical functional structures in chitin and keratin
- The influence of glycine on β-lactoglobulin amyloid fibril formation – computer simulation study
Articles in the same Issue
- Frontmatter
- Preface
- Preface
- Contribution to “From Nanostructure to Function”
- Temporal airy pulses efficiency in thin glass dicing
- Surface investigations of bronze and brass statuary monuments in open-air exposure
- Dual dynamic voltammetric study of the formation of ferrate ions during the electrochemical dissolution of white cast iron in the transpassive region
- Cetuximab-induced changes to tumor oral mucosa models probed by stimulated Raman spectromicroscopy
- From nanostructure to function: hierarchical functional structures in chitin and keratin
- The influence of glycine on β-lactoglobulin amyloid fibril formation – computer simulation study