Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
-
Devendra Pratap Rao
, Vimala Devi Krishnasamy
, Venkatesa Prabhu Sundramurthy
, Sumanth Ratna Kandavalli
, Muthusamy Siva Chitra
Abstract
This study examined the methods for preparing biocarbon from Teff hay (TBC) and thiol-grafted seed gum of Tamarindus indica (TH@TI-TBC) with the purpose of removing cadmium (Cd) from polluted electroplating waste water. To improve biocarbon adsorption, seed gum and thiol were added in a two-step combination. At a pH of 5.5, the most effective Cd adsorption was seen with TH@TI-TBC (261.47 mg g−1). While comparing to the Freundlich and Temkin models, the Langmuir and pseudo-second-order kinetic models found to be the best fit to the obtained adsorption data. After being treated with electroplating wastewater having 30 mg−1 L of cadmium, TH@TI-TBC was able to remove up to 89 % of the Cd, proving its effectiveness in dealing with adsorptive removal of Cd. Experimental studies and computational analyses revealed that electrostatic interaction and surface complexation were the principal underlying processes for Cd removal by TH@TI-TBC. In addition, an innovative material that can transform the waste into a product for environmental remediation must be developed using the vast amounts of Teff hay that are generated as agro-residue. So, this work proved that TH@TI-TBC can be made from Teff hay biocarbon could be a potential candidate for removing Cd from industrial wastewater.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: None declared.
-
Data availability: All the data used in the manuscript are within the manuscript.
References
1. Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M. B.; Hay, A. G. Adsorption of Copper and Zinc by Biochars Produced From Pyrolysis of Hardwood and Corn Straw in Aqueous Solution. Bioresour. Technol. 2011, 102 (19), 8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078.Search in Google Scholar PubMed
2. Zeng, Z.; Zheng, P.; Kang, D.; Li, Y.; Li, W.; Xu, D.; Chen, W.; Pan, C. The Removal of Copper and Zinc From Swine Wastewater by Anaerobic Biological-Chemical Process: Performance and Mechanism. J. Hazard. Mater. 2021, 401, 123767. https://doi.org/10.1016/j.jhazmat.2020.123767.Search in Google Scholar PubMed
3. Chen, J.; Gu, A.; Miensah, E. D.; Liu, Y.; Wang, P.; Mao, P.; Gong, C.; Jiao, Y.; Chen, K.; Yang, Y. Cu-Zn Bimetal ZIFs Derived Nanowhisker Zero-Valent Copper Decorated ZnO Nanocomposites Induced Oxygen Activation for High-Efficiency Iodide Elimination. J. Hazard. Mater. 2021, 416, 126097. https://doi.org/10.1016/j.jhazmat.2021.126097.Search in Google Scholar PubMed
4. Huang, Q.; Zhao, J.; Liu, M.; Chen, J.; Zhu, X.; Wu, T.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of Polyethylene Polyamine@tannic Acid Encapsulated MgAl-Layered Double Hydroxide for the Efficient Removal of Copper (II) Ions From Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2018, 82, 92–101. https://doi.org/10.1016/j.jtice.2017.10.019.Search in Google Scholar
5. Jin, X.; Xiang, Z.; Liu, Q.; Chen, Y.; Lu, F. Polyethyleneimine-Bacterial Cellulose Bioadsorbent for Effective Removal of Copper and Lead Ions From Aqueous Solution. Bioresour. Technol. 2017, 244, 844–849. https://doi.org/10.1016/j.biortech.2017.08.072.Search in Google Scholar PubMed
6. Inyang, M. I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y. S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Environ. Sci. Technol. 2016, 46 (4), 406–433. https://doi.org/10.1080/10643389.2015.1096880.Search in Google Scholar
7. Periyasamy, S.; Asefa Adego, A.; Kumar, P. S.; Desta, G.; Zelalem, T.; Karthik, V.; Isabel, J. B.; Jayakumar, M.; Sundramurthy, V. P.; Rangasamy, G. Influencing Factors and Environmental Feasibility Analysis of Agricultural Waste Preprocessing Routes towards Biofuel Production – A Review. Biomass Bioenergy 2024, 180, 107001. https://doi.org/10.1016/j.biombioe.2023.107001.Search in Google Scholar
8. Kerga, G. A.; Shibeshi, N. T.; Prabhu, S. V.; Varadharajan, V.; Yeshitla, A. Biosorption Potential of Purpureocillium lilacinum Biomass for Chromium (VI) Removal: Isolation, Characterization, and Significance of Growth Limiting Factors. Appl. Biol. Chem. 2023, 66 (1), 78; https://doi.org/10.1186/s13765-023-00834-x.Search in Google Scholar
9. Tessema, B.; Gonfa, G.; Hailegiorgis, S. M.; Prabhu, S. V. Characteristic Investigations on Bio-Silica Gel Prepared From Teff (Eragrostis tef) Straw: Effect of Calcination Time. Mater. Res. Express 2023, 10 (11), 115102; https://doi.org/10.1088/2053-1591/ad09a7.Search in Google Scholar
10. Keyore, A. A.; Sundramurthy, V. P.; Woldemariam, H. W. Statistical Modeling and Optimization for Ameliorating Physico-Chemical Characteristics of Enset (Ensete ventricosum) Starch Using Alcoholic–Alkaline Treatment Assisted by Freeze-Drying. Biomass Convers. Biorefin. 2023, https://doi.org/10.1007/s13399-023-04744-2.Search in Google Scholar
11. Biswal, B. K.; Balasubramanian, R. Use of Biochar as a Low-Cost Adsorbent for Removal of Heavy Metals From Water and Wastewater: A Review. J. Environ. Chem. Eng. 2023, 11 (5), 110986. https://doi.org/10.1016/j.jece.2023.110986.Search in Google Scholar
12. Nazik, G.; Aadil, M.; Zulfiqar, S.; Hassan, W.; Rahman, A.; Ibrahim, S. M.; Naseem, K.; Sheikh, T. A.; Akhtar, M. N. Synthesis of Doped Metal Sulfide Nanoparticles and Their Graphene Reinforced Nanohybrid for Pb(II) Detection. Z. Phys. Chem. 2023, 237 (8), 1257–1285.10.1515/zpch-2023-0252Search in Google Scholar
13. Hussain, M.; Aadil, M.; Cochran, E. W.; Zulfiqar, S.; Hassan, W.; Kousar, T.; Somaily, H. H.; Mahmood, F. Facile Synthesis of a Porous Sorbent Derived From the Rice Husk Biomass: A New and Highly Efficient Material for Water Remediation. Inorg. Chem. Commun. 2024, 160, 112010. https://doi.org/10.1016/j.inoche.2023.112010.Search in Google Scholar
14. Tariq, R.; Zulfiqar, S.; Somaily, H. H.; Warsi, M. F.; Ayman, I.; Hanif, F.; Akhtar, M.; Aadil, M. Synthesis of Carbon Supported Iron Oxide Nanochips and Their Composite with Glutathione: A Novel Electrochemical Sensitive Material. Surf. Interfaces 2022, 34, 102350. https://doi.org/10.1016/j.surfin.2022.102350.Search in Google Scholar
15. Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C. M.; Anitha, K. L. Latest Trends in Heavy Metal Removal From Wastewater by Biochar Based Sorbents. J. Water Process Eng. 2020, 38, 101561. https://doi.org/10.1016/j.jwpe.2020.101561.Search in Google Scholar
16. Park, J.-H.; Ok, Y. S.; Kim, S. H.; Cho, J. S.; Heo, J. S.; Delaune, R. D.; Seo, D. C. Competitive Adsorption of Heavy Metals onto Sesame Straw Biochar in Aqueous Solutions. Chemosphere 2016, 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093.Search in Google Scholar PubMed
17. Lakshmi, D.; Akhil, D.; Kartik, A.; Gopinath, K. P.; Arun, J.; Bhatnagar, A.; Rinklebe, J.; Kim, W.; Muthusamy, G. Artificial Intelligence (AI) Applications in Adsorption of Heavy Metals Using Modified Biochar. Sci. Total. Environ. 2021, 801, 149623. https://doi.org/10.1016/j.scitotenv.2021.149623.Search in Google Scholar PubMed
18. Wang, H.; Xia, W.; Lu, P. Study on Adsorption Characteristics of Biochar on Heavy Metals in Soil. Korean J. Chem. Eng. 2017, 34 (6), 1867–1873; https://doi.org/10.1007/s11814-017-0048-7.Search in Google Scholar
19. Zhou, R.; Zhang, M.; Shao, S. Optimization of Target Biochar for the Adsorption of Target Heavy Metal Ion. Sci. Rep. 2022, 12 (1), 13662; https://doi.org/10.1038/s41598-022-17901-w.Search in Google Scholar PubMed PubMed Central
20. Ni, B.-J.; Huang, Q.-S.; Wang, C.; Ni, T.-Y.; Sun, J.; Wei, W. Competitive Adsorption of Heavy Metals in Aqueous Solution onto Biochar Derived From Anaerobically Digested Sludge. Chemosphere 2019, 219, 351–357. https://doi.org/10.1016/j.chemosphere.2018.12.053.Search in Google Scholar PubMed
21. Shan, R.; Shi, Y.; Gu, J.; Wang, Y.; Yuan, H. Single and Competitive Adsorption Affinity of Heavy Metals toward Peanut Shell-Derived Biochar and its Mechanisms in Aqueous Systems. Chin. J. Chem. Eng. 2020, 28 (5), 1375–1383. https://doi.org/10.1016/j.cjche.2020.02.012.Search in Google Scholar
22. Yu, W.; Lian, F.; Cui, G.; Liu, Z. N-Doping Effectively Enhances the Adsorption Capacity of Biochar for Heavy Metal Ions From Aqueous Solution. Chemosphere 2018, 193, 8–16. https://doi.org/10.1016/j.chemosphere.2017.10.134.Search in Google Scholar PubMed
23. Kılıç, M.; Kırbıyık, Ç.; Çepelioğullar, Ö.; Pütün, A. E. Adsorption of Heavy Metal Ions From Aqueous Solutions by Bio-Char, a By-Product of Pyrolysis. Appl. Surf. Sci. 2013, 283, 856–862. https://doi.org/10.1016/j.apsusc.2013.07.033.Search in Google Scholar
24. Wang, L.; Wang, Y.; Ma, F.; Tankpa, V.; Bai, S.; Guo, X.; Wang, X. Mechanisms and Reutilization of Modified Biochar Used for Removal of Heavy Metals From Wastewater: A Review. Sci. Total. Environ. 2019, 668, 1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011.Search in Google Scholar PubMed
25. Zhou, Y.; Gao, B.; Zimmerman, A. R.; Fang, J.; Sun, Y.; Cao, X. Sorption of Heavy Metals on Chitosan-Modified Biochars and its Biological Effects. Chem. Eng. J. 2013, 231, 512–518. https://doi.org/10.1016/j.cej.2013.07.036.Search in Google Scholar
26. Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y. Enhanced Removal of Heavy Metal Ions From Aqueous Solution Using Manganese Dioxide-Loaded Biochar: Behavior and Mechanism. Sci. Rep. 2020, 10 (1), 6067; https://doi.org/10.1038/s41598-020-63000-z.Search in Google Scholar PubMed PubMed Central
27. Sundramurthy, V. P.; Varadharajan, V.; Wilson, V. H.; Jose, S.; Manoharan, S.; Alharbi, N. S.; Khaled, J. M.; Kandasamy, B.; Palanisamy, G. Adsorptive Removal of Cu(II) Ions From Aqueous Solution Using Teff (Eragrostis tef) Hay Based Magnetized Biocarbon: RSM-GA, ANN Based Optimization and Kinetics Aspects. Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2024-0608.Search in Google Scholar
28. Sharmiladevi, S.; Ramesh, N.; Prabhu, S. V.; Mayakannan, S. Microwave-Assisted Functionalized Biosorbent Preparation Using Seed Gum of Tamarindus indica: Characterization and Evaluation of Cr(VI) Removal Potency From Tannery Effluents. Biomass Conv. Bioref. 2024. https://doi.org/10.1007/s13399-024-05667-2.Search in Google Scholar
29. Zhou, D.; Liu, D.; Gao, F.; Li, M.; Luo, X. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils. Int. J. Environ. Res. Public Health 2017, 14 (7), 681; https://doi.org/10.3390/ijerph14070681.Search in Google Scholar PubMed PubMed Central
30. Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N. S.; Pei, J.; Huang, H. Using Biochar for Remediation of Soils Contaminated with Heavy Metals and Organic Pollutants. Environ. Sci. Pollut. Res. 2013, 20 (12), 8472–8483; https://doi.org/10.1007/s11356-013-1659-0.Search in Google Scholar PubMed
31. Boraah, N.; Chakma, S.; Kaushal, P. Attributes of Wood Biochar as an Efficient Adsorbent for Remediating Heavy Metals and Emerging Contaminants From Water: A Critical Review and Bibliometric Analysis. J. Environ. Chem. Eng. 2022, 10 (3), 107825. https://doi.org/10.1016/j.jece.2022.107825.Search in Google Scholar
32. Singh, V.; Pant, N.; Sharma, R. K.; Padalia, D.; Rawat, P. S.; Goswami, R.; Singh, P.; Kumar, A.; Bhandari, P.; Tabish, A.; Deifalla, A. M. Adsorption Studies of Pb(II) and Cd(II) Heavy Metal Ions From Aqueous Solutions Using a Magnetic Biochar Composite Material. Separations 2023, 10 (7), 389; https://doi.org/10.3390/separations10070389.Search in Google Scholar
33. Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability 2021, 13 (24), 14041; https://doi.org/10.3390/su132414041.Search in Google Scholar
34. Chen, W.-H.; Hoang, A. T.; Nižetić, S.; Pandey, A.; Cheng, C. K.; Luque, R.; Ong, H. C.; Thomas, S.; Nguyen, X. P. Biomass-Derived Biochar: From Production to Application in Removing Heavy Metal-Contaminated Water. Process Saf. Environ. Prot. 2022, 160, 704–733. https://doi.org/10.1016/j.psep.2022.02.061.Search in Google Scholar
35. Singh, E.; Kumar, A.; Mishra, R.; You, S.; Singh, L.; Kumar, S.; Kumar, R. Pyrolysis of Waste Biomass and Plastics for Production of Biochar and Its Use for Removal of Heavy Metals From Aqueous Solution. Bioresour. Technol. 2021, 320, 124278. https://doi.org/10.1016/j.biortech.2020.124278.Search in Google Scholar PubMed
36. Qi, G.; Pan, Z.; Zhang, X.; Chang, S.; Wang, H.; Wang, M.; Xiang, W.; Gao, B. Microwave Biochar Produced with Activated Carbon Catalyst: Characterization and Adsorption of Heavy Metals. Environ. Res. 2023, 216, 114732. https://doi.org/10.1016/j.envres.2022.114732.Search in Google Scholar PubMed
37. Gaddala, B.; Kandavalli, S. R.; Raghavendran, G.; Sivaprakash, A.; Rallabandi, R.; Sundramurthy, V. P.; Selvaraju, M.; Sugumar, M. Exploring the Impact of Hybridization on Green Composites: Pineapple Leaf and Sisal Fiber Reinforcement Using Poly(furfuryl alcohol) Bioresin. Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2024-0772.Search in Google Scholar
38. Liu, X.; Sun, J.; Duan, S.; Wang, Y.; Hayat, T.; Alsaedi, A.; Wang, C.; Li, J. A Valuable Biochar From Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions. Sci. Rep. 2017, 7 (1), 10033; https://doi.org/10.1038/s41598-017-09446-0.Search in Google Scholar PubMed PubMed Central
39. Hussain, A.; Maitra, J.; Khan, K. A. Development of Biochar and Chitosan Blend for Heavy Metals Uptake From Synthetic and Industrial Wastewater. Appl. Water Sci. 2017, 7 (8), 4525–4537; https://doi.org/10.1007/s13201-017-0604-7.Search in Google Scholar
40. Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of Pyrolysis Temperature on Characteristics and Heavy Metal Adsorptive Performance of Biochar Derived From Municipal Sewage Sludge. Bioresour. Technol. 2014, 164, 47–54. https://doi.org/10.1016/j.biortech.2014.04.048.Search in Google Scholar PubMed
41. Liao, W.; Zhang, X.; Ke, S.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Effect of Different Biomass Species and Pyrolysis Temperatures on Heavy Metal Adsorption, Stability and Economy of Biochar. Ind. Crops Prod. 2022, 186, 115238. https://doi.org/10.1016/j.indcrop.2022.115238.Search in Google Scholar
42. Lin, S.; Huang, W.; Yang, H.; Sun, S.; Yu, J. Recycling Application of Waste Long-Root Eichhornia crassipes in the Heavy Metal Removal Using Oxidized Biochar Derived as Adsorbents. Bioresour. Technol. 2020, 314, 123749. https://doi.org/10.1016/j.biortech.2020.123749.Search in Google Scholar PubMed
43. Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Wang, J.; Zhang, C.; Chen, R. Stabilization of Heavy Metal-Contaminated Soils by Biochar: Challenges and Recommendations. Sci. Total Environ. 2020, 729, 139060. https://doi.org/10.1016/j.scitotenv.2020.139060.Search in Google Scholar PubMed
44. Joseph, S.; Van, H. T.; Mai, T. L. A.; Duong, T. M. H.; Weldon, S.; Munroe, P.; Mitchell, D.; Taherymoosavi, S. Immobilization of Heavy Metals in Contaminated Soil after Mining Activity by Using Biochar and Other Industrial By-Products: The Significant Role of Minerals on the Biochar Surfaces. Environ. Technol. 2019, 40, 3200–3215; https://doi.org/10.1080/09593330.2018.1468487.Search in Google Scholar PubMed
45. Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of Sorption and Desorption Studies of Heavy Metal Ions From Biochar and Commercial Active Carbon. Chem. Eng. J. 2017, 307, 353–363. https://doi.org/10.1016/j.cej.2016.08.088.Search in Google Scholar
46. Wang, Y.; Liu, R. H2O2 Treatment Enhanced the Heavy Metals Removal by Manure Biochar in Aqueous Solutions. Sci. Total Environ. 2018, 628–629, 1139–1148. https://doi.org/10.1016/j.scitotenv.2018.02.137.Search in Google Scholar PubMed
47. Huang, W.-H.; Chang, Y.-J.; Lee, D.-J. Layered Double Hydroxide Loaded Pinecone Biochar as Adsorbent for Heavy Metals and Phosphate Ion Removal From Water. Bioresour. Technol. 2024, 391, 129984. https://doi.org/10.1016/j.biortech.2023.129984.Search in Google Scholar PubMed
48. Ling, L.-L.; Liu, W.-J.; Zhang, S.; Jiang, H. Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution. Environ. Sci. Technol. 2017, 51 (17), 10081–10089; https://doi.org/10.1021/acs.est.7b02382.Search in Google Scholar PubMed
49. Yin, M.; Bai, X.; Wu, D.; Li, F.; Jiang, K.; Ma, N.; Chen, Z.; Zhang, X.; Fang, L. Sulfur-functional Group Tunning on Biochar through Sodium Thiosulfate Modified Molten Salt Process for Efficient Heavy Metal Adsorption. Chem. Eng. J. 2022, 433, 134441. https://doi.org/10.1016/j.cej.2021.134441.Search in Google Scholar
50. Cataldo, S.; Chiodo, V.; Crea, F.; Maisano, S.; Milea, D.; Pettignano, A. Biochar From Byproduct to High Value Added Material – A New Adsorbent for Toxic Metal Ions Removal From Aqueous Solutions. J. Mol. Liq. 2018, 271, 481–489. https://doi.org/10.1016/j.molliq.2018.09.009.Search in Google Scholar
51. Lee, S.-J.; Park, J. H.; Ahn, Y.-T.; Chung, J. W. Comparison of Heavy Metal Adsorption by Peat Moss and Peat Moss-Derived Biochar Produced under Different Carbonization Conditions. Water Air Soil Pollut. 2015, 226 (2), 9; https://doi.org/10.1007/s11270-014-2275-4.Search in Google Scholar
52. Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Adsorption and Desorption of Heavy Metals by the Sewage Sludge and Biochar-Amended Soil. Environ. Geochem. Health 2019, 41 (4), 1663–1674; https://doi.org/10.1007/s10653-017-0036-1.Search in Google Scholar PubMed PubMed Central
53. Ayesha, A. S.; Aadil, M.; Ejaz, S. R.; Anjum, S.; Saleem, T.; Zain, M.; Alsafari, I. A. Biological Synthesis of Nanostructured ZnO as a Solar-Light Driven Photocatalyst and Antimicrobial Agent. Ceram. Int. 2022, 48 (10), 14652–14661. https://doi.org/10.1016/j.ceramint.2022.01.359.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2024-0715).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
- Unusual behavior in thermodynamical properties of chitosan-lanthanide oxide composites: competition between the size and mass
- Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
- Bi2Se3/ZnSe heterojunction on flexible Mo metal foil for photo electrolysis water splitting application
- Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
- Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment
- Bioresin based hybrid green composite preparation using Holoptelea integrifolia fibers reinforced by Ziziphus jujuba seed particles: a fuzzy logic assisted optimization of mechanical behaviour
- Tamm plasmon-induced impressive optical nonlinearity of silver@graphite core–shell nanostructures
- Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
- Sol–gel synthesized lithium–cobalt co-doped titanium (IV) oxide nanocomposite as an efficient photocatalyst for environmental remediation
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
- Unusual behavior in thermodynamical properties of chitosan-lanthanide oxide composites: competition between the size and mass
- Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
- Bi2Se3/ZnSe heterojunction on flexible Mo metal foil for photo electrolysis water splitting application
- Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
- Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment
- Bioresin based hybrid green composite preparation using Holoptelea integrifolia fibers reinforced by Ziziphus jujuba seed particles: a fuzzy logic assisted optimization of mechanical behaviour
- Tamm plasmon-induced impressive optical nonlinearity of silver@graphite core–shell nanostructures
- Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
- Sol–gel synthesized lithium–cobalt co-doped titanium (IV) oxide nanocomposite as an efficient photocatalyst for environmental remediation