Biomedical and agricultural applications of gold nanoparticles (AuNPs): a comprehensive review
-
Sajad Khan
, Raham Sher Khan , Asaad Khalid , Maria Gul , Brekhna , Abdul Wadood , Muhammad Zahoorund Riaz Ullah
Abstract
The evolution of engineered nanoparticles (NPs); particularly metallic NPs have played an indispensable role in the development of nanotechnology. Among these NPs, gold nanoparticles (AuNPs) have attracted significant attention and are highly being utilized in several fields due to their exceptional properties. Gold nanoparticles were an emerging subject of intensive research due to their spherical shape, large specific surface area, and quick modification by functional groups. As the demand for AuNPs continuously increases; therefore, there is a pressing need to optimize the scientific approach to fully comprehend and exploit their potential. The effect of AuNPs on plant growth and development can either be beneficial or harmful, depending on the plant species and the concentration of NPs. Moderate concentrations of AuNPs have been found to induce primary and lateral roots, reduce oxidative stress, and elongate rosette diameter, while a higher concentration showed negative effects on plant growth and development. Gold nanoparticles also exhibit potent antibacterial, antiviral, and anticancer properties, making them most beneficial in various sectors, especially in the biomedical field. AuNPs are extensively being utilized across various sectors, but their application in the biomedical field is noteworthy, particularly in bioimaging, biosensing, targeted gene and drug delivery, theranostics, regenerative medicine, and tissue engineering. This review emphasizes the potential applications of AuNPs in diverse sectors including agriculture and biomedical, highlighting their potential impact (positive and negative) on plant growth. Furthermore, the review also aims to signify the mechanism of action of AuNPs and their efficacy against bacteria, viruses, and cancer cells.
-
Research ethics: Not applicable.
-
Author contributions: MZ, SK and RSK conceptualized the study and wrote the paper. MZ, AK, MG, B, RU and AW revised the paper. RU, AK, MG, B, and AW helped in write up of the paper. Final proof reading was done by MZ. All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: None declared.
-
Data availability: All the data is presented in this paper. None of the associated data is there in any repository.
References
1. Li, S., Zhu, T., Huang, J., Guo, Q., Chen, G., Lai, Y. Durable Antibacterial and UV-Protective Ag/TiO2@fabrics for Sustainable Biomedical Application. Int. J. Nanomed. 2017, 12, 2593–2606; https://doi.org/10.2147/ijn.s132035.Suche in Google Scholar PubMed PubMed Central
2. Mba, I. E., Nweze, E. I. Nanoparticles as Therapeutic Options for Treating Multidrug-Resistant Bacteria: Research Progress, Challenges, and Prospects. World J. Microbiol. Biotechnol. 2021, 37, 1–30; https://doi.org/10.1007/s11274-021-03070-x.Suche in Google Scholar PubMed PubMed Central
3. Siddiqi, K. S., Husen, A. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application. Nanoscale Res. Lett. 2016, 11, 1–15; https://doi.org/10.1186/s11671-016-1311-2.Suche in Google Scholar PubMed PubMed Central
4. Leso, V., Fontana, L., Iavicoli, I. Biomedical Nanotechnology: Occupational Views. Nano Today 2019, 24, 10–14; https://doi.org/10.1016/j.nantod.2018.11.002.Suche in Google Scholar
5. Bali, R., Harris, A. T. Biogenic Synthesis of Au Nanoparticles Using Vascular Plants. Ind. Eng. Chem. Res. 2010, 49, 12762–12772; https://doi.org/10.1021/ie101600m.Suche in Google Scholar
6. Gubitosa, J., Rizzi, V., Lopedota, A., Fini, P., Laurenzana, A., Fibbi, G., Fanelli, F., Petrella, A., Laquintana, V., Denora, N., Comparelli, R., Cosma, P. One Pot Environmental Friendly Synthesis of Gold Nanoparticles Using Punica Granatum Juice: A Novel Antioxidant Agent for Future Dermatological and Cosmetic Applications. J. Colloid Interface Sci. 2018, 521, 50–61; https://doi.org/10.1016/j.jcis.2018.02.069.Suche in Google Scholar PubMed
7. Rajeshkumar, S., Malarkodi, C., Al Farraj, D. A., Soliman Elshikh, M., Mohana Roopan, S. Employing Sulphated Polysaccharide (Fucoidan) as Medium for Gold Nanoparticles Preparation and its Anticancer Study against HepG2 Cell Lines. Mater. Today Commun. 2021, 26; https://doi.org/10.1016/j.mtcomm.2020.101975.Suche in Google Scholar
8. Thakur, R. K., Dhirta, B., Shirkot, P. Studies on Effect of Gold Nanoparticles on Meloidogyne incognita and Tomato Plants Growth and Development. BioRxiv 2018, 2, 1005.10.1101/428144Suche in Google Scholar
9. Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., Schroeder, A. Therapeutic Nanoparticles Penetrate Leaves and Deliver Nutrients to Agricultural Crops. Sci. Rep. 2018, 8; https://doi.org/10.1038/s41598-018-25197-y.Suche in Google Scholar PubMed PubMed Central
10. Hammami, I., Alabdallah, N. M., jomaa, A. A., Kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci. 2021, 33, 101560; https://doi.org/10.1016/j.jksus.2021.101560.Suche in Google Scholar
11. Goswami, P., Yadav, S., Mathur, J. Positive and Negative Effects of Nanoparticles on Plants and Their Applications in Agriculture. Plant Sci. Today 2019, 6, 232–242; https://doi.org/10.14719/pst.2019.6.2.502.Suche in Google Scholar
12. Landa, P. Positive Effects of Metallic Nanoparticles on Plants: Overview of Involved Mechanisms. Plant Physiol. Biochem. 2021, 161, 12–24; https://doi.org/10.1016/j.plaphy.2021.01.039.Suche in Google Scholar PubMed
13. Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., Zaidi, M. G. H. Gold-Nanoparticle Induced Enhancement in Growth and Seed Yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–310; https://doi.org/10.1007/s10725-011-9649-z.Suche in Google Scholar
14. Kumar, V., Guleria, P., Kumar, V., Yadav, S. K. Gold Nanoparticle Exposure Induces Growth and Yield Enhancement in Arabidopsis thaliana. Sci. Total Environ. 2013, 461–462, 462–468; https://doi.org/10.1016/j.scitotenv.2013.05.018.Suche in Google Scholar PubMed
15. Gopinath, K., Venkatesh, K. S., Ilangovan, R., Sankaranarayanan, K., Arumugam, A. Green Synthesis of Gold Nanoparticles from Leaf Extract of Terminalia arjuna, for the Enhanced Mitotic Cell Division and Pollen Germination Activity. Ind. Crops Prod. 2013, 50, 737–742; https://doi.org/10.1016/j.indcrop.2013.08.060.Suche in Google Scholar
16. Gopinath, K., Gowri, S., Karthika, V., Arumugam, A. Green Synthesis of Gold Nanoparticles from Fruit Extract of Terminalia arjuna, for the Enhanced Seed Germination Activity of Gloriosa Superba. J. Nanostruct. Chem. 2014, 4; https://doi.org/10.1007/s40097-014-0115-0.Suche in Google Scholar
17. Shukla, S. K., Kumar, R., Mishra, R. K., Pandey, A., Pathak, A., Zaidi, M., Srivastava, S. K., Dikshit, A. Prediction and Validation of Gold Nanoparticles (GNPs) on Plant Growth Promoting Rhizobacteria (PGPR): A Step toward Development of Nano-Biofertilizers. Nanotechnol. Rev. 2015, 4, 439–448; https://doi.org/10.1515/ntrev-2015-0036.Suche in Google Scholar
18. Feichtmeier, N. S., Walther, P., Leopold, K. Uptake, Effects, and Regeneration of Barley Plants Exposed to Gold Nanoparticles. Environ. Sci. Pollut. Res. 2015, 22, 8549–8558; https://doi.org/10.1007/s11356-014-4015-0.Suche in Google Scholar PubMed
19. Sousa, A. A., Hassan, S. A., Knittel, L. L., Balbo, A., Aronova, M. A., Brown, P. H., Schuck, P., Leapman, R. D. Biointeractions of Ultrasmall Glutathione-Coated Gold Nanoparticles: Effect of Small Size Variations. Nanoscale 2016, 8, 6577–6588; https://doi.org/10.1039/c5nr07642k.Suche in Google Scholar PubMed PubMed Central
20. Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., Prasad, S. M., Singh, P. K., Dubey, N. K., Pandey, A. C., Chauhan, D. K. Nitric Oxide Alleviates Silver Nanoparticles (AgNps)-Induced Phytotoxicity in Pisum sativum Seedlings. Plant Physiol. Biochem. 2017, 110, 167–177; https://doi.org/10.1016/j.plaphy.2016.06.015.Suche in Google Scholar PubMed
21. Balalakshmi, C., Gopinath, K., Govindarajan, M., Lokesh, R., Arumugam, A., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Benelli, G. Green Synthesis of Gold Nanoparticles Using a Cheap Sphaeranthus indicus Extract: Impact on Plant Cells and the Aquatic Crustacean Artemia nauplii. J. Photochem. Photobiol. B 2017, 173, 598–605; https://doi.org/10.1016/j.jphotobiol.2017.06.040.Suche in Google Scholar PubMed
22. Alharbi, N. S., Bhakyaraj, K., Gopinath, K., Govindarajan, M., Kumuraguru, S., Mohan, S., Kaleeswarran, P., Kadaikunnan, S., Khaled, J. M., Benelli, G. Gum-Mediated Fabrication of Eco-Friendly Gold Nanoparticles Promoting Cell Division and Pollen Germination in Plant Cells. J. Clust. Sci. 2017, 28, 507–517; https://doi.org/10.1007/s10876-016-1130-8.Suche in Google Scholar
23. Ndeh, N. T., Maensiri, S., Maensiri, D. The Effect of Green Synthesized Gold Nanoparticles on Rice Germination and Roots. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 035008; https://doi.org/10.1088/2043-6254/aa724a.Suche in Google Scholar
24. Panichikkal, J., Thomas, R., John, J. C., Radhakrishnan, E. K. Biogenic Gold Nanoparticle Supplementation to Plant Beneficial Pseudomonas monteilii was Found to Enhance Its Plant Probiotic Effect. Curr. Microbiol. 2019, 76, 503–509; https://doi.org/10.1007/s00284-019-01649-0.Suche in Google Scholar PubMed
25. Abd El-Aziz, A. R. M., Al-Othman, M. R. Gold Nanoparticles Biosynthesis Using Zingiber officinale and Their Impact on the Growth and Chemical Composition of Lentil (Lens Culinaris medic.). Pak. J. Bot. 2019, 51, 443–450; https://doi.org/10.30848/pjb2019-2(21).Suche in Google Scholar
26. Fazal, H., Abbasi, B. H., Ahmad, N., Ali, M., Shujait Ali, S., Khan, A., Wei, D. Q. Sustainable Production of Biomass and Industrially Important Secondary Metabolites in Cell Cultures of Selfheal (Prunella vulgaris L.) Elicited by Silver and Gold Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2553–2561; https://doi.org/10.1080/21691401.2019.1625913.Suche in Google Scholar PubMed
27. Iqbal, M. S., Singh, A. K., Singh, S. P., Ansari, M. I. Nanoparticles and Plant Interaction With Respect to Stress Response. In Nanotechnology in the Life Sciences; Springer: Switzerland, 2020; pp. 1–15.10.1007/978-3-030-34544-0_1Suche in Google Scholar
28. Ferrari, E., Barbero, F., Busquets-Fité, M., Franz-Wachtel, M., Köhler, H. R., Puntes, V., Kemmerling, B. Growth-Promoting Gold Nanoparticles Decrease Stress Responses in Arabidopsis Seedlings. Nanomaterials 2021, 11.10.3390/nano11123161Suche in Google Scholar PubMed PubMed Central
29. Anwar, N., Wahid, J., Uddin, J., Khan, A., Shah, M., Shah, S. A., Subhan, F., Khan, M. A., Ali, K., Rauf, M., Arif, M. Phytosynthesis of Poly (Ethylene Glycol) Methacrylate-Hybridized Gold Nanoparticles from C. tuberculata: Their Structural Characterization and Potential for in vitro Growth in Banana. Vitr. Cell Dev. Biol. Plant. 2021, 57, 248–260; https://doi.org/10.1007/s11627-020-10150-4.Suche in Google Scholar
30. Panichikkal, J., Krishnankutty, R. E. Chitosan and Gold Nanoparticles Supplementation for Augmentation of Indole-3-Acetic Acid Production by Rhizospheric Pseudomonas aeruginosa and Plant Growth Enhancement. Curr. Microbiol. 2022, 79, 1–8; https://doi.org/10.1007/s00284-022-02850-4.Suche in Google Scholar PubMed
31. Venzhik, Y., Deryabin, A., Popov, V., Dykman, L., Moshkov, I. Gold Nanoparticles as Adaptogens Increazing the Freezing Tolerance of Wheat Seedlings. Environ. Sci. Pollut. Res. 2022, 29, 55235–55249; https://doi.org/10.1007/s11356-022-19759-x.Suche in Google Scholar PubMed
32. Malik, S., Niazi, M., Khan, M., Rauff, B., Anwar, S., Amin, F., Hanif, R. Cytotoxicity study of gold nanoparticle synthesis using aloe Vera, honey, and Gymnema sylvestre leaf extract. ACS Omega 2023, 8, 6325–6336; https://doi.org/10.1021/acsomega.2c06491.Suche in Google Scholar PubMed PubMed Central
33. Ostroumov, S. A., Poklonov, V. A., Kotelevtsev, S. V., Orlov, S. N. Toxicity of Gold Nanoparticles for Plants in Experimental Aquatic System. Moscow Univ. Biol. Sci. Bull. 2014, 69, 108–112; https://doi.org/10.3103/s0096392514030080.Suche in Google Scholar
34. Rajeshwari, A., Suresh, S., Chandrasekaran, N., Mukherjee, A. Toxicity Evaluation of Gold Nanoparticles Using an Allium cepa Bioassay. RSC Adv. 2016, 6, 24000–24009; https://doi.org/10.1039/c6ra04712b.Suche in Google Scholar
35. Siegel, J., Záruba, K., Švorčík, V., Kroumanová, K., Burketová, L., Martinec, J. Round-Shape Gold Nanoparticles: Effect of Particle Size and Concentration on Arabidopsis thaliana Root Growth. Nanoscale Res. Lett. 2018, 13; https://doi.org/10.1186/s11671-018-2510-9.Suche in Google Scholar PubMed PubMed Central
36. Torres, R., Diz, V. E., Lagorio, M. G. Effects of Gold Nanoparticles on the Photophysical and Photosynthetic Parameters of Leaves and Chloroplasts. Photochem. Photobiol. Sci. 2018, 17, 505–516; https://doi.org/10.1039/c8pp00067k.Suche in Google Scholar PubMed
37. Debnath, P., Mondal, A., Hajra, A., Das, C., Mondal, N. K. Cytogenetic Effects of Silver and Gold Nanoparticles on Allium cepa Roots. J. Genet. Eng. Biotechnol. 2018, 16, 519–526; https://doi.org/10.1016/j.jgeb.2018.07.007.Suche in Google Scholar PubMed PubMed Central
38. Milewska-Hendel, A., Witek, W., Rypień, A., Zubko, M., Baranski, R., Stróż, D., Kurczyńska, E. U. The Development of a Hairless Phenotype in Barley Roots Treated with Gold Nanoparticles is Accompanied by Changes in the Symplasmic Communication. Sci. Rep. 2019, 9; https://doi.org/10.1038/s41598-019-41164-7.Suche in Google Scholar PubMed PubMed Central
39. Jiang, M., Dai, S., Wang, B., Xie, Z., Li, J., Wang, L., Li, S., Tan, Y., Tian, B., Shu, Q., Huang, J. Gold Nanoparticles Synthesized Using Melatonin Suppress Cadmium Uptake and Alleviate its Toxicity in Rice. Environ. Sci. Nano 2021, 8, 1042–1056; https://doi.org/10.1039/d0en01172j.Suche in Google Scholar
40. Sani, A., Cao, C., Cui, D. Toxicity of Gold Nanoparticles (AuNPs): A Review. Biochem. Biophys. Rep. 2021, 26.10.1016/j.bbrep.2021.100991Suche in Google Scholar PubMed PubMed Central
41. Lovecká, P., Macůrková, A., Záruba, K., Hubáček, T., Siegel, J., Valentová, O. Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles. Plants 2021, 10, 1260; https://doi.org/10.3390/plants10061260.Suche in Google Scholar PubMed PubMed Central
42. Mikhailova, E. O. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J. Funct. Biomater. 2021, 12.10.3390/jfb12040070Suche in Google Scholar PubMed PubMed Central
43. Aljarba, N. H., Imtiaz, S., Anwar, N., Alanazi, I. S., Alkahtani, S. Anticancer and Microbial Activities of Gold Nanoparticles: A Mechanistic Review. J. King Saud Univ. Sci. 2022, 34, 101907; https://doi.org/10.1016/j.jksus.2022.101907.Suche in Google Scholar
44. Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T., Adeyemi, O. S. Nanoparticles as Antimicrobial and Antiviral Agents: A Literature-Based Perspective Study. Heliyon 2021, 7, e06456; https://doi.org/10.1016/j.heliyon.2021.e06456.Suche in Google Scholar PubMed PubMed Central
45. Khan, I., Saeed, K., Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931; https://doi.org/10.1016/j.arabjc.2017.05.011.Suche in Google Scholar
46. MubarakAli, D., Thajuddin, N., Jeganathan, K., Gunasekaran, M. Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and its Antibacterial Activity Against Clinically Isolated Pathogens. Colloids Surf. B Biointerfaces 2011, 85, 360–365; https://doi.org/10.1016/j.colsurfb.2011.03.009.Suche in Google Scholar PubMed
47. Bindhu, M. R., Umadevi, M. Antibacterial Activities of Green Synthesized Gold Nanoparticles. Mater. Lett. 2014, 120, 122–125; https://doi.org/10.1016/j.matlet.2014.01.108.Suche in Google Scholar
48. Elbagory, A., Meyer, M., Cupido, C., Hussein, A. A. Inhibition of Bacteria Associated with Wound Infection by Biocompatible Green Synthesized Gold Nanoparticles from South African Plant Extracts. Nanomaterials 2017, 7, 417; https://doi.org/10.3390/nano7120417.Suche in Google Scholar PubMed PubMed Central
49. Abdel-Raouf, N., Al-Enazi, N. M., Ibraheem, I. B. M. Green Biosynthesis of Gold Nanoparticles Using Galaxaura elongata and Characterization of Their Antibacterial Activity. Arab. J. Chem. 2017, 10, S3029–S3039; https://doi.org/10.1016/j.arabjc.2013.11.044.Suche in Google Scholar
50. Shahriari, M., Hemmati, S., Zangeneh, A., Zangeneh, M. M. Biosynthesis of Gold Nanoparticles Using Allium noeanum Reut. Ex Regel Leaves Aqueous Extract; Characterization and Analysis of Their Cytotoxicity, Antioxidant, and Antibacterial Properties. Appl. Organomet. Chem. 2019, 33; https://doi.org/10.1002/aoc.5189.Suche in Google Scholar
51. Keskin, C., Atalar, M. N., Firat Baran, M., Baran, A. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Iğdır Üniversitesi Fen Bilim Enstitüsü Derg. 2021, 11, 365–375.10.21597/jist.779169Suche in Google Scholar
52. Sathiyaraj, S., Suriyakala, G., Dhanesh Gandhi, A., Babujanarthanam, R., Almaary, K. S., Chen, T. W., Kaviyarasu, K. Biosynthesis, Characterization, and Antibacterial Activity of Gold Nanoparticles. J. Infect. Public Health 2021, 14, 1842–1847; https://doi.org/10.1016/j.jiph.2021.10.007.Suche in Google Scholar PubMed
53. Al Hagbani, T., Rizvi, S. M. D., Hussain, T., Mehmood, K., Rafi, Z., Moin, A., Abu Lila, A. S., Alshammari, F., Khafagy, E. S., Rahamathulla, M., Abdallah, M. H. Cefotaxime Mediated Synthesis of Gold Nanoparticles: Characterization and Antibacterial Activity. Polymers 2022, 14, 771; https://doi.org/10.3390/polym14040771.Suche in Google Scholar PubMed PubMed Central
54. Andresen, H., Mager, M., Grießner, M., Charchar, P., Todorova, N., Bell, N., Theocharidis, G., Bertazzo, S., Yarovsky, I., Stevens, M. M. Single-Step Homogeneous Immunoassays Utilizing Epitope-Tagged Gold Nanoparticles: On the Mechanism, Feasibility, and Limitations. Chem. Mater. 2014, 26, 4696–4704; https://doi.org/10.1021/cm500535p.Suche in Google Scholar
55. Bowman, M. C., Ballard, T. E., Ackerson, C. J., Feldheim, D. L., Margolis, D. M., Melander, C. Inhibition of HIV Fusion with Multivalent Gold Nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896–6897; https://doi.org/10.1021/ja710321g.Suche in Google Scholar PubMed PubMed Central
56. Vijayakumar, S., Ganesan, S. Gold Nanoparticles as an HIV Entry Inhibitor. Curr. HIV Res. 2014, 10, 643–646; https://doi.org/10.2174/157016212803901383.Suche in Google Scholar PubMed
57. Peña-González, C. E., García-Broncano, P., Ottaviani, M. F., Cangiotti, M., Fattori, A., Hierro-Oliva, M., González-Martín, M. L., Pérez-Serrano, J., Gómez, R., Muñoz-Fernández, M. Á., Sánchez-Nieves, J., De La Mata, F. J. Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity. Chem. – Eur. J. 2016, 22, 2987–2999; https://doi.org/10.1002/chem.201504262.Suche in Google Scholar PubMed
58. Meléndez-Villanueva, M. A., Morán-Santibañez, K., Martínez-Sanmiguel, J. J., Rangel-López, R., Garza-Navarro, M. A., Rodríguez-Padilla, C., Zarate-Triviño, D. G., Trejo-Ávila, L. M. Virucidal Activity of Gold Nanoparticles Synthesized by Green Chemistry Using Garlic Extract. Viruses 2019, 11, 1111; https://doi.org/10.3390/v11121111.Suche in Google Scholar PubMed PubMed Central
59. Dhanasezhian, A., Srivani, S., Govindaraju, K., Parija, P., Sasikala, S., Ramesh Kumar, M. R. Anti-Herpes Simplex Virus (HSV-1 and HSV-2) Activity of Biogenic Gold and Silver Nanoparticles Using Seaweed Sargassum wightii. Indian J. Mar. Sci. 2019, 48, 1252–1257.Suche in Google Scholar
60. El-Sheekh, M. M., Shabaan, M. T., Hassan, L., Morsi, H. H. Antiviral Activity of Algae Biosynthesized Silver and Gold Nanoparticles Against Herps Simplex (HSV-1) Virus in vitro Using Cell-Line Culture Technique. Int. J. Environ. Health Res. 2020, 32(3), 1–12; https://doi.org/10.1080/09603123.2020.1789946.Suche in Google Scholar PubMed
61. Kim, J., Yeom, M., Lee, T., Kim, H. O., Na, W., Kang, A., Lim, J. W., Park, G., Park, C., Song, D., Haam, S. Porous Gold Nanoparticles for Attenuating Infectivity of Influenza A Virus. J. Nanobiotechnol. 2020, 18, 1–11; https://doi.org/10.1186/s12951-020-00611-8.Suche in Google Scholar PubMed PubMed Central
62. Paradowska, E., Studzińska, M., Jabłońska, A., Lozovski, V., Rusinchuk, N., Mukha, I., Vitiuk, N., Leśnikowski, Z. J. Antiviral Effect of Nonfunctionalized Gold Nanoparticles against Herpes Simplex Virus Type-1 (Hsv-1) and Possible Contribution of Near-Field Interaction Mechanism. Molecules 2021, 26, 5960; https://doi.org/10.3390/molecules26195960.Suche in Google Scholar PubMed PubMed Central
63. Ayipo, Y. O., Bakare, A. A., Badeggi, U. M., Jimoh, A. A., Lawal, A., Mordi, M. N. Recent Advances on Therapeutic Potentials of Gold and Silver Nanobiomaterials for Human Viral Diseases. Curr. Res. Chem. Biol. 2022, 2, 100021; https://doi.org/10.1016/j.crchbi.2022.100021.Suche in Google Scholar PubMed PubMed Central
64. Chaika, M., Zahorodnya, S., Naumenko, K., Pankivska, Y., Povnitsa, O., Mukha, I., Vityuk, N., Dorovskih, A., Lokshyn, M., Lysenko, V., Lozovski, V., Rusinchuk, N. Virus Deformation or Destruction: Size-Dependence of Antiviral and Virucidal Activities of Gold Nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2022, 13, 035008; https://doi.org/10.1088/2043-6262/ac879a.Suche in Google Scholar
65. Raghunandan, D., Ravishankar, B., Sharanbasava, G., Mahesh, D. B., Harsoor, V., Yalagatti, M. S., Bhagawanraju, M., Venkataraman, A. Anti-Cancer Studies of Noble Metal Nanoparticles Synthesized Using Different Plant Extracts. Cancer Nanotechnol. 2011, 2, 57–65; https://doi.org/10.1007/s12645-011-0014-8.Suche in Google Scholar PubMed PubMed Central
66. Dorosti, N., Jamshidi, F. Plant-mediated Gold Nanoparticles by Dracocephalum kotschyi as Anticholinesterase Agent: Synthesis, Characterization, and Evaluation of Anticancer and Antibacterial Activity. J. Appl. Biomed. 2016, 14, 235–245; https://doi.org/10.1016/j.jab.2016.03.001.Suche in Google Scholar
67. Muthukumar, T., Sudhakumari, Sambandam, B., Aravinthan, A., Sastry, T. P., Kim, J. H. Green Synthesis of Gold Nanoparticles and Their Enhanced Synergistic Antitumor Activity Using HepG2 and MCF7 Cells and its Antibacterial Effects. Process Biochem. 2016, 51, 384–391; https://doi.org/10.1016/j.procbio.2015.12.017.Suche in Google Scholar
68. Ahmad, N., Bhatnagar, S., Saxena, R., Iqbal, D., Ghosh, A. K., Dutta, R. Biosynthesis and Characterization of Gold Nanoparticles: Kinetics, in vitro and in vivo Study. Mater. Sci. Eng. C 2017, 78, 553–564; https://doi.org/10.1016/j.msec.2017.03.282.Suche in Google Scholar PubMed
69. Khatua, A., Prasad, A., Priyadarshini, E., Patel, A. K., Naik, A., Saravanan, M., Barabadi, H., Ghosh, L., Paul, B., Paulraj, R., Meena, R. Emerging Antineoplastic Plant-Based Gold Nanoparticle Synthesis: A Mechanistic Exploration of Their Anticancer Activity Toward Cervical Cancer Cells. J. Clust. Sci. 2020, 31, 1329–1340; https://doi.org/10.1007/s10876-019-01742-1.Suche in Google Scholar
70. Hosny, M., Fawzy, M., El-Badry, Y. A., Hussein, E. E., Eltaweil, A. S. Plant-Assisted Synthesis of Gold Nanoparticles for Photocatalytic, Anticancer, and Antioxidant Applications. J. Saudi Chem. Soc. 2022, 26, 101419; https://doi.org/10.1016/j.jscs.2022.101419.Suche in Google Scholar
71. Akhtar, S., Asiri, S. M., Khan, F. A., Gunday, S. T., Iqbal, A., Alrushaid, N., Labib, O. A., Deen, G. R., Henari, F. Z. Formulation of Gold Nanoparticles with Hibiscus and Curcumin Extracts Induced Anti-Cancer Activity. Arab. J. Chem. 2022, 15, 103594; https://doi.org/10.1016/j.arabjc.2021.103594.Suche in Google Scholar
72. Safdar, M., Ozaslan, M. Enhanced Catalytic, Antibacterial and Anti-Cancer Activities of Erythromycin Capped Gold Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1819–1827; https://doi.org/10.1007/s10904-022-02239-7.Suche in Google Scholar
73. Manzar, N., Mujeeb, E. Nanomedicine. J. Coll. Phys. Surg. Pak. 2012, 22, 481–483; https://doi.org/10.08.2012/JCPSP.481483.Suche in Google Scholar
74. Hainfeld, J. F., O’Connor, M. J., Lin, P., Qian, L., Slatkin, D. N., Smilowitz, H. M. Infrared-Transparent Gold Nanoparticles Converted by Tumors to Infrared Absorbers Cure Tumors in Mice by Photothermal Therapy. PLoS One 2014, 9; https://doi.org/10.1371/journal.pone.0088414.Suche in Google Scholar PubMed PubMed Central
75. Cabuzu, D., Cirja, A., Puiu, R., Grumezescu, A. Biomedical Applications of Gold Nanoparticles. Curr. Top. Med. Chem. 2015, 15, 1605–1613; https://doi.org/10.2174/1568026615666150414144750.Suche in Google Scholar PubMed
76. Chhour, P., Naha, P. C., Cheheltani, R., Benardo, B., Mian, S., Cormode, D. P. Gold Nanoparticles for Biomedical Applications: Synthesis and in vitro Evaluation. Methods Pharmacol. Toxicol. 2016, 39, 87–111.10.1007/978-1-4939-3121-7_5Suche in Google Scholar
77. Khan, H. A., Sakharkar, M. K., Nayak, A., Kishore, U., Khan, A. Nanoparticles for Biomedical Applications: An Overview. In Nanobiomaterials Nanostructured Mater. Biomed. Appl; Elsevier: Amsterdam, Netherlands, 2018; pp. 357–384.10.1016/B978-0-08-100716-7.00014-3Suche in Google Scholar
78. Chowdhury, N. K., Choudhury, R., Gogoi, B., Chang, C.-M., Pandey, R. P. Microbial Synthesis of Gold Nanoparticles and Their Application. Curr. Drug Targets 2022, 23, 752–760; https://doi.org/10.2174/1389450123666220128152408.Suche in Google Scholar PubMed
79. Li, J. Study of Nano-Transfer Technology for Additive Nanomanufacturing and Surface Enhanced Raman Scattering. Master’s Thesis, University of Dayton, Ohio, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1628006052402601.Suche in Google Scholar
80. Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493; https://doi.org/10.1021/cr068107d.Suche in Google Scholar PubMed
81. Rodríguez-Lorenzo, L., Álvarez-Puebla, R. A., De Abajo, F. J. G., Liz-Marzán, L. M. Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. J. Phys. Chem. C 2010, 114, 7336–7340; https://doi.org/10.1021/jp909253w.Suche in Google Scholar
82. Hamdy, M. E., Del Carlo, M., Hussein, H. A., Salah, T. A., El-Deeb, A. H., Emara, M. M., Pezzoni, G., Compagnone, D. Development of Gold Nanoparticles Biosensor for Ultrasensitive Diagnosis of Foot and Mouth Disease Virus. J. Nanobiotechnol. 2018, 16, 1–12; https://doi.org/10.1186/s12951-018-0374-x.Suche in Google Scholar PubMed PubMed Central
83. Pal, S., Ray, A., Andreou, C., Zhou, Y., Rakshit, T., Wlodarczyk, M., Maeda, M., Toledo-Crow, R., Berisha, N., Yang, J., Hsu, H. T., Oseledchyk, A., Mondal, J., Zou, S., Kircher, M. F. DNA-Enabled Rational Design of Fluorescence-Raman Bimodal Nanoprobes for Cancer Imaging and Therapy. Nat. Commun. 2019, 10, 1–13; https://doi.org/10.1038/s41467-019-09173-2.Suche in Google Scholar PubMed PubMed Central
84. Lee, D., Lee, H., Lee, G., Kim, I., Lee, S. W., Kim, W., Lee, S. W., Lee, J. H., Park, J., Yoon, D. S. Extremely Sensitive and Wide-Range Silver Ion Detection Via Assessing the Integrated Surface Potential of a DNA-Capped Gold Nanoparticle. Nanotechnology 2019, 30; https://doi.org/10.1088/1361-6528/aaf66f.Suche in Google Scholar PubMed
85. Borse, V., Konwar, A. N. Synthesis and Characterization of Gold Nanoparticles as a Sensing Tool for the Lateral Flow Immunoassay Development. Sensors Int. 2020, 1; https://doi.org/10.1016/j.sintl.2020.100051.Suche in Google Scholar
86. Li, C., Li, Z., Li, S., Zhang, Y., Sun, B., Yu, Y., Ren, H., Jiang, S., Yue, W. LSPR Optical Fiber Biosensor Based on a 3D Composite Structure of Gold Nanoparticles and Multilayer Graphene Films. Opt. Express 2020, 28, 6071; https://doi.org/10.1364/oe.385128.Suche in Google Scholar
87. Shahbazi, N., Zare-Dorabei, R., Naghib, S. M. Multifunctional Nanoparticles as Optical Biosensing Probe for Breast Cancer Detection: A Review. Mater. Sci. Eng. C 2021, 127.10.1016/j.msec.2021.112249Suche in Google Scholar PubMed
88. Yesudasu, V., Pradhan, H. S., Pandya, R. J. Recent Progress in Surface Plasmon Resonance Based Sensors: A Comprehensive Review. Heliyon 2021, 7; https://doi.org/10.1016/j.heliyon.2021.e06321.Suche in Google Scholar PubMed PubMed Central
89. Medici, S., Peana, M., Coradduzza, D., Zoroddu, M. A. Gold Nanoparticles and Cancer: Detection, Diagnosis and Therapy. Semin. Cancer Biol. 2021, 76, 27–37; https://doi.org/10.1016/j.semcancer.2021.06.017.Suche in Google Scholar PubMed
90. Chen, R., Hu, Y., Chen, M., An, J., Lyu, Y., Liu, Y., Li, D. Naked-Eye Detection of Hepatitis B Surface Antigen Using Gold Nanoparticles Aggregation and Catalase-Functionalized Polystyrene Nanospheres. ACS Omega 2021, 6, 9828–9833; https://doi.org/10.1021/acsomega.1c00507.Suche in Google Scholar PubMed PubMed Central
91. Lospinoso, D., Colombelli, A., Lomascolo, M., Rella, R., Manera, M. G. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection. Nanomaterials 2022, 12.10.3390/nano12030380Suche in Google Scholar PubMed PubMed Central
92. Bansal, S. A., Kumar, V., Karimi, J., Singh, A. P., Kumar, S. Role of Gold Nanoparticles in Advanced Biomedical Applications. Nanoscale Adv. 2020, 2, 3764–3787; https://doi.org/10.1039/d0na00472c.Suche in Google Scholar PubMed PubMed Central
93. Spyropoulos, V., Bania, M. Some Perspectives of Novel Imaging Methods in Cardiology Reflected on Recent Relevant Industrial Property Documents, P-0055, 2017.Suche in Google Scholar
94. Dunning, C. A. S., Bazalova-Carter, M. Sheet Beam X-Ray Fluorescence Computed Tomography (XFCT) Imaging of Gold Nanoparticles. Med. Phys. 2018, 45, 2572–2582; https://doi.org/10.1002/mp.12893.Suche in Google Scholar PubMed
95. Hu, D. H., Sheng, Z. H., Zhang, P. F., Yang, D. Z., Liu, S. H., Gong, P., Gao, D. Y., Fang, S. T., Ma, Y. F., Cai, L. T. Hybrid Gold-Gadolinium Nanoclusters for Tumor-Targeted NIRF/CT/MRI Triple-Modal Imaging In Vivo. Nanoscale 2013, 5, 1624–1628; https://doi.org/10.1039/c2nr33543c.Suche in Google Scholar PubMed
96. Estrada, L. C., Gratton, E. Spectroscopic Properties of Gold Nanoparticles at the Single-Particle Level in Biological Environments. ChemPhysChem 2012, 13, 1087–1092; https://doi.org/10.1002/cphc.201100771.Suche in Google Scholar PubMed PubMed Central
97. Lahr, R. H., Vikesland, P. J. Surface-Enhanced Raman Spectroscopy (SERS) Cellular Imaging of Intracellulary Biosynthesized Gold Nanoparticles. ACS Sustain. Chem. Eng. 2014, 2, 1599–1608; https://doi.org/10.1021/sc500105n.Suche in Google Scholar
98. Xia, J., Yao, J., Wang, L. V. Photoacoustic Tomography: Principles and Advances. Prog. Electromagn. Res. 2014, 147, 1–22; https://doi.org/10.2528/pier14032303.Suche in Google Scholar PubMed PubMed Central
99. Yan, G. H., Wang, K., Shao, Z., Luo, L., Song, Z. M., Chen, J., Jin, R., Deng, X., Wang, H., Cao, Z., Liu, Y., Cao, A. Artificial Antibody Created by Conformational Reconstruction of the Complementary-Determining Region on Gold Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E34–43; https://doi.org/10.1073/pnas.1713526115.Suche in Google Scholar PubMed PubMed Central
100. Kircher, M. F., De La Zerda, A., Jokerst, J. V., Zavaleta, C. L., Kempen, P. J., Mittra, E., Pitter, K., Huang, R., Campos, C., Habte, F., Sinclair, R., Brennan, C. W., Mellinghoff, I. K., Holland, E. C., Gambhir, S. S. A Brain Tumor Molecular Imaging Strategy Using a New Triple-Modality MRI-Photoacoustic-Raman Nanoparticle. Nat. Med. 2012, 18, 829–834; https://doi.org/10.1038/nm.2721.Suche in Google Scholar PubMed PubMed Central
101. Sonavane, G., Tomoda, K., Sano, A., Ohshima, H., Terada, H., Makino, K. In Vitro Permeation of Gold Nanoparticles through Rat Skin and Rat Intestine: Effect of Particle Size. Colloids Surf. B Biointerfaces 2008, 65, 1–10; https://doi.org/10.1016/j.colsurfb.2008.02.013.Suche in Google Scholar PubMed
102. Paul, W., Sharma, C. P. Blood Compatibility Studies of Swarna Bhasma (Gold Bhasma), an Ayurvedic Drug. Int. J. Ayurveda Res. 2011, 2, 14–22; https://doi.org/10.4103/0974-7788.83183.Suche in Google Scholar PubMed PubMed Central
103. Roa, W., Xiong, Y., Chen, J., Yang, X., Song, K., Yang, X., Kong, B., Wilson, J., Xing, J. Z. Pharmacokinetic and Toxicological Evaluation of Multi-Functional Thiol-6-Fluoro-6-Deoxy-D-Glucose Gold Nanoparticles In Vivo. Nanotechnology 2012, 23; https://doi.org/10.1088/0957-4484/23/37/375101.Suche in Google Scholar PubMed
104. Daraee, H., Eatemadi, A., Abbasi, E., Aval, S. F., Kouhi, M., Akbarzadeh, A. Application of Gold Nanoparticles in Biomedical and Drug Delivery. Artif. Cell Nanomed. Biotechnol. 2016, 44, 410–422; https://doi.org/10.3109/21691401.2014.955107.Suche in Google Scholar PubMed
105. Biswas, S., Chawda, M., Thakur, K., Gudi, R., Bellare, J. Physicochemical Variation in Nanogold-Based Ayurveda Medicine Suvarna Bhasma Produced by Various Manufacturers Lead to Different In Vivo Bioaccumulation Profiles. J. Evidence Based Integr. Med. 2021, 26; https://doi.org/10.1177/2515690x211011064.Suche in Google Scholar
106. Yafout, M., Ousaid, A., Khayati, Y., El Otmani, I. S. Gold Nanoparticles as a Drug Delivery System for Standard Chemotherapeutics: A New Lead for Targeted Pharmacological Cancer Treatments. Sci. Afr. 2021, 11, e00685; https://doi.org/10.1016/j.sciaf.2020.e00685.Suche in Google Scholar
107. Amina, S. J., Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857; https://doi.org/10.2147/ijn.s279094.Suche in Google Scholar
108. Oh, N., Park, J. H. Endocytosis and Exocytosis of Nanoparticles in Mammalian Cells. Int. J. Nanomed. 2014, 9, 51–63; https://doi.org/10.2147/ijn.s26592.Suche in Google Scholar
109. McIntosh, C. M., Esposito, E. A., Boal, A. K., Simard, J. M., Martin, C. T., Rotello, V. M. Inhibition of DNA Transcription Using Cationic Mixed Monolayer Protected Gold Clusters. J. Am. Chem. Soc. 2001, 123, 7626–7629; https://doi.org/10.1021/ja015556g.Suche in Google Scholar PubMed
110. Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., Mirkin, C. A. Oligonucleotide-Modified Gold Nanoparticles for Infracellular Gene Regulation. Science 2006, 312, 1027–1030; https://doi.org/10.1126/science.1125559.Suche in Google Scholar PubMed
111. Han, G., Ghosh, P., De, M., Rotello, V. M. Drug and Gene Delivery Using Gold Nanoparticles. Nanobiotechnology 2007, 3, 40–45; https://doi.org/10.1007/s12030-007-0005-3.Suche in Google Scholar
112. Tiwari, P. M., Vig, K., Dennis, V. A., Singh, S. R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31–63; https://doi.org/10.3390/nano1010031.Suche in Google Scholar PubMed PubMed Central
113. Cevher, E., Demir, A., Sefik, E. Gene Delivery Systems: Recent Progress In Viral and Non-Viral Therapy. In Recent Adv. Nov. Drug Carr. Syst.; IntechOpen: London, UK, 2012; pp. 437–470.10.5772/53392Suche in Google Scholar
114. Chen, Y. T., Tsai, M. S., Yang, T. L., Ku, A. T., Huang, K. H., Huang, C. Y., Chou, F. J., Fan, H. H., Hong, J. B., Yen, S. T., Wang, W. Le., Lin, C. C., Hsu, Y. C., Su, K. Y., Su, I. C., Jang, C. W., Behringer, R. R., Favaro, R., Nicolis, S. K., Chien, C. L., Lin, S. W., Yu, I. S. R. 26R–G. R. A Cre-Activable Dual Fluorescent Protein Reporter Mouse. PLoS One 2012, 7; https://doi.org/10.1371/journal.pone.0046171.Suche in Google Scholar PubMed PubMed Central
115. Mendes, R., Fernandes, A. R., Baptista, P. V. Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer-The Case for Combined Delivery? Genes 2017, 8; https://doi.org/10.3390/genes8030094.Suche in Google Scholar PubMed PubMed Central
116. Lee, N., Choi, S. H., Hyeon, T. Nano-Sized CT Contrast Agents. Nanomater. Neoplasms 2020, 25(19), 219–270.10.1201/9780429027819-4Suche in Google Scholar
117. Khlebtsov, N. G., Akchurin, G. G., Khlebtsov, B. N., Tuchin, V. V., Zharov, V. P. Laser-Induced Destruction of Gold Nanoshells: New Weapons in the Cell-Killing Arsenal; SPIE Newsroom: Bellingham, USA, 2008. https://api.semanticscholar.org/CorpusID:121168776.10.1117/2.1200805.1176Suche in Google Scholar
118. Agasti, S. S., Chompoosor, A., You, C. C., Ghosh, P., Kim, C. K., Rotello, V. M. Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles. J. Am. Chem. Soc. 2009, 131, 5728–5729; https://doi.org/10.1021/ja900591t.Suche in Google Scholar PubMed PubMed Central
119. Cobley, C. M., Chen, J., Chul Cho, E., Wang, L. V., Xia, Y. Gold Nanostructures: A Class of Multifunctional Materials for Biomedical Applications. Chem. Soc. Rev. 2011, 40, 44–56; https://doi.org/10.1039/b821763g.Suche in Google Scholar PubMed
120. Moraes Silva, S., Tavallaie, R., Sandiford, L., Tilley, R. D., Gooding, J. J. Gold Coated Magnetic Nanoparticles: From Preparation to Surface Modification for Analytical and Biomedical Applications. Chem. Commun. 2016, 52, 7528–7540; https://doi.org/10.1039/c6cc03225g.Suche in Google Scholar PubMed
121. Sun, Y., Wang, Q., Chen, J., Liu, L., Ding, L., Shen, M., Li, J., Han, B., Duan, Y. Temperature-Sensitive Gold Nanoparticle-Coated Pluronic-PLL Nanoparticles for Drug Delivery and Chemo-Photothermal Therapy. Theranostics 2017, 7, 4424–4444; https://doi.org/10.7150/thno.18832.Suche in Google Scholar PubMed PubMed Central
122. Guo, C., Zhong, J., Gao, L., Gao, J., Huang, S. Nanostructures for Flexible Electronics and Drug Delivery. J. Nanomater. 2017, 2017; https://doi.org/10.1155/2017/3516952.Suche in Google Scholar
123. Her, S., Jaffray, D. A., Allen, C. Gold Nanoparticles for Applications in Cancer Radiotherapy: Mechanisms and Recent Advancements. Adv. Drug Deliv. Rev. 2017, 109, 84–101; https://doi.org/10.1016/j.addr.2015.12.012.Suche in Google Scholar PubMed
124. Vines, J. B., Yoon, J. H., Ryu, N. E., Lim, D. J., Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Front. Chem. 2019, 7; https://doi.org/10.3389/fchem.2019.00167.Suche in Google Scholar PubMed PubMed Central
125. Khan, N. U., Lin, J., Younas, M. R., Liu, X., Shen, L. Synthesis of Gold Nanorods and Their Performance in the Field of Cancer Cell Imaging and Photothermal Therapy. Cancer Nanotechnol. 2021, 12.10.1186/s12645-021-00092-wSuche in Google Scholar
126. Kelkar, S. S., Reineke, T. M. Theranostics: Combining Imaging and Therapy. Bioconjug Chem. 2011, 22, 1879–1903; https://doi.org/10.1021/bc200151q.Suche in Google Scholar PubMed
127. Xia, Y., Li, W., Cobley, C. M., Chen, J., Xia, X., Zhang, Q., Yang, M., Cho, E. C., Brown, P. K. Gold Nanocages: From Synthesis to Theranostic Applications. Acc. Chem. Res. 2011, 44, 914–924; https://doi.org/10.1021/ar200061q.Suche in Google Scholar PubMed PubMed Central
128. Siafaka, P. I., Okur, N. Ü., Karantas, I. D., Okur, M. E., Gündoğdu, E. A. Current Update on Nanoplatforms as Therapeutic and Diagnostic Tools: A Review for the Materials Used as Nanotheranostics and Imaging Modalities. Asian J. Pharm. Sci. 2021, 16, 24–46; https://doi.org/10.1016/j.ajps.2020.03.003.Suche in Google Scholar PubMed PubMed Central
129. Venditti, I. Engineered Gold-Based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering 2019, 6; https://doi.org/10.3390/bioengineering6020053.Suche in Google Scholar PubMed PubMed Central
130. Pedrosa, P., Vinhas, R., Fernandes, A., Baptista, P. V. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool? Nanomaterials 2015, 5, 1853–1879; https://doi.org/10.3390/nano5041853.Suche in Google Scholar PubMed PubMed Central
131. Bai, R. G., Muthoosamy, K., Manickam, S., Hilal-Alnaqbi, A. Graphene-Based 3D Scaffolds in Tissue Engineering: Fabrication, Applications, and Future Scope in Liver Tissue Engineering. Int. J. Nanomed. 2019, 14, 5753–5783; https://doi.org/10.2147/ijn.s192779.Suche in Google Scholar PubMed PubMed Central
132. Vial, S., Reis, R. L., Oliveira, J. M. Recent Advances Using Gold Nanoparticles as a Promising Multimodal Tool for Tissue Engineering and Regenerative Medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 92–112; https://doi.org/10.1016/j.cossms.2016.03.006.Suche in Google Scholar
133. Aamodt, J. M., Grainger, D. W. Extracellular Matrix-Based Biomaterial Scaffolds and the Host Response. Biomaterials 2016, 86, 68–82; https://doi.org/10.1016/j.biomaterials.2016.02.003.Suche in Google Scholar PubMed PubMed Central
134. Ko, W. K., Heo, D. N., Moon, H. J., Lee, S. J., Bae, M. S., Lee, J. B., Sun, I. C., Jeon, H. B., Park, H. K., Kwon, I. K. The Effect of Gold Nanoparticle Size on Osteogenic Differentiation of Adipose-Derived Stem Cells. J. Colloid Interface Sci. 2015, 438, 68–76; https://doi.org/10.1016/j.jcis.2014.08.058.Suche in Google Scholar PubMed
135. Rahbar, M., Zou, S., Baharfar, M., Liu, G. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated Via Hcg Assay for Pregnancy Test. Biosensors 2021, 11.10.3390/bios11120474Suche in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- Biomedical and agricultural applications of gold nanoparticles (AuNPs): a comprehensive review
- Original Papers
- Growth and physiochemical properties of semi organic ammonium pentaborate dihydrate single crystal
- A comparative investigation on the surface and physicochemical properties of organobimetallic thiocyanate complexes of Cadmium, Zinc, Mercury and Manganese
- Insights into the corrosion resistance of a novel quinoline derivative on Q235 steel in acidizing medium under hydrodynamic condition: experimental and surface study
- Geometrical factor, bond order analysis, vibrational energies, electronic properties (gas and solvent phases), topological and molecular docking analysis on Ipriflavone-osteoporosis diseases
- Exploration of facile hydrothermally produced pure nickel oxide nanostructures as an effective electrode material for the enhanced supercapacitor applications
- Correlation between surface morphology and photocatalytic performance of electrochemically anodized SnO2 nanoparticles
- Quantum mechanical treatment for potential antiphlogistic effects from the leaf extract of Ocimum basilicum citriodorum using gas chromatography-mass spectrometry (GCMS)
- Homology modeling and molecular docking study of metabotropic glutamate receptor 5 variant F: an attempt to develop drugs for treating CNS diseases
Artikel in diesem Heft
- Frontmatter
- Review Article
- Biomedical and agricultural applications of gold nanoparticles (AuNPs): a comprehensive review
- Original Papers
- Growth and physiochemical properties of semi organic ammonium pentaborate dihydrate single crystal
- A comparative investigation on the surface and physicochemical properties of organobimetallic thiocyanate complexes of Cadmium, Zinc, Mercury and Manganese
- Insights into the corrosion resistance of a novel quinoline derivative on Q235 steel in acidizing medium under hydrodynamic condition: experimental and surface study
- Geometrical factor, bond order analysis, vibrational energies, electronic properties (gas and solvent phases), topological and molecular docking analysis on Ipriflavone-osteoporosis diseases
- Exploration of facile hydrothermally produced pure nickel oxide nanostructures as an effective electrode material for the enhanced supercapacitor applications
- Correlation between surface morphology and photocatalytic performance of electrochemically anodized SnO2 nanoparticles
- Quantum mechanical treatment for potential antiphlogistic effects from the leaf extract of Ocimum basilicum citriodorum using gas chromatography-mass spectrometry (GCMS)
- Homology modeling and molecular docking study of metabotropic glutamate receptor 5 variant F: an attempt to develop drugs for treating CNS diseases