Startseite Vibrational spectra, effect of solvents in UV-visible, electronic properties, charge distribution, molecular interaction and Fukui analysis on 3-amino-2,5-dichloropyridine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vibrational spectra, effect of solvents in UV-visible, electronic properties, charge distribution, molecular interaction and Fukui analysis on 3-amino-2,5-dichloropyridine

  • Deepthi Joseph , Naiyf S. Alharbi , Ghulam Abbas und Muthu Sambantham EMAIL logo
Veröffentlicht/Copyright: 22. Dezember 2023

Abstract

FT-Raman, UV-visible, infrared Fourier transform, and DFT approaches, were used on molecule 3-amino-2,5-dichloropyridine. An extensive analysis of the vibrational distribution energy has been undertaken for the complete assignments for all the vibrations. Also carried out atoms in molecules theory of topological analysis, reduced density gradient and electron localization function. The contacts among the giver and acceptor were studied through natural bond orbital. The estimated values for the orbital of the highest and orbital of the lowest for various solvents reflect the electron stimulation properties. The electronic transition was obtained by ultraviolet-visible spectroscopy and time dependent-density function theory method with several solvents. The molecule’s reactive regions are obtained by Fukui function and MEP exploration. The compound was subjected to non-linear optical investigations to determine its dipole moment, first-order polarizability, and hyperpolarizability.

Keywords: DFT; NBO; RDG; AIM; NLO

Corresponding author: Muthu Sambantham, Department of Physics, Arignar Anna Government Arts College, Cheyyar 604407, Tamil Nadu, India, E-mail:

  1. Research ethics: This work does not contain any studies with human participants or animals by any of the authors.

  2. Author contributions: Deepthi Joseph – Writing – original draft preparation, formal analysis. Naiyf S. Alharbi – Data curation, resources, writing – original draft preparation, supervision, writing – review and editing, project administration. Ghulam Abbas – conceptualization, methodology, software, writing – original draft preparation, supervision. Muthu Sambantham – Conceptualization, resources, formal analysis, resources.

  3. Competing interests: The authors declare no conflicts of interest.

  4. Research funding: The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2023R70), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: The data presented in this work may be requested from the corresponding author.

References

1. Saady, A., Rais, Z., Benhiba, F., Salim, R., Ismaily Alaoui, K., Arrousse, N., Elhajjaji, F., Taleb, M., Jarmoni, K., Kandri Rodi, Y., Warad, I., Zarrouk, A. Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo[4,5-b] pyridine derivatives against mild steel corrosion. Corros. Sci. 2021, 189, 109621. https://doi.org/10.1016/j.corsci.2021.109621.Suche in Google Scholar

2. Radwan, M. A. A., Alshubramy, M. A., Abdel-Motaal, M., Hemdan, B. A., El-Kady, D. S. Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives. Bioorg. Chem. 2020, 96, 103516. https://doi.org/10.1016/j.bioorg.2019.103516.Suche in Google Scholar PubMed

3. Lončar, B., Perin, N., Mioč, M., Ida, B., Grgić, L., Kralj, M., Tomić, S., Radić Stojković, M., Hranjec, M. Novel amino substituted tetracyclic imidazo [4,5-b]pyridine derivatives: design, synthesis, antiproliferative activity and DNA/RNA binding study. Eur. J. Med. Chem. 2021, 217, 113342. https://doi.org/10.1016/j.ejmech.2021.113342.Suche in Google Scholar PubMed

4. Song, Y.-L., Tian, C.-P., Wu, Y., Jiang, L., Shen, L.-Q. Design, synthesis and antitumor activity of steroidal pyridine derivatives based on molecular docking. Steroids 2019, 143, 53–61. https://doi.org/10.1016/j.steroids.2018.12.007.Suche in Google Scholar PubMed

5. Sattar, N., Sajid, H., Tabassum, S., Ayub, K., Mahmood, T., Gilani, M. A. Potential sensing of toxic chemical warfare agents (CWAs) by twisted nanographenes: a first principle approach. Sci. Tot. Environ. 2022, 824, 153858. https://doi.org/10.1016/j.scitotenv.2022.153858.Suche in Google Scholar PubMed

6. Verma, C., Rhee, K.Y., Quraishi, M. A., Ebenso, E. E. Pyridine based N-heterocyclic compounds as aqueous phase corrosion inhibitors: a review. J. Taiwan Inst. Chem. Eng. 2020, 117, 265–277. https://doi.org/10.1016/j.jtice.2020.12.011.Suche in Google Scholar

7. Zhang, J., Xi, J., He, R., Zhuang, R., Kong, L., Fu, L., Zhao, Y., Zhang, C., Zeng, L., Lu, J., Tao, R., Liu, Z., Zhu, H., Liu, S. Discovery of 3-(thiophen/thiazole-2-ylthio)pyridine derivatives as multitarget anticancer agents. Med. Chem. Res. 2019, 28, 1633–1647. https://doi.org/10.1007/s00044-019-02400-x.Suche in Google Scholar

8. Wang, F., Yang, W., Li, Z., Zhou, B. Studies on molecular mechanism between SHP2 and pyridine derivatives by 3D-QSAR, molecular docking and MD simulations. J. Saudi Chem. Soc. 2021, 25, 101346. https://doi.org/10.1016/j.jscs.2021.101346. https://doi.org/10.1016/j.jscs.2021.101346.Suche in Google Scholar

9. Boudakian, M. M. New developments in the synthesis of lower fluorinated pyridines via diazotization-fluorination of aminopyridines in anhydrous hydrogen fluoride. J. Fluorine Chem. 1981, 18, 497–506. https://doi.org/10.1016/S0022-1139(00)82666-4.Suche in Google Scholar

10. Pankratov, A. N. Quantitative structure–property relationships in the pyridine series. Heteroatom Chem. 2002, 13, 229–241. https://doi.org/10.1002/hc.10013.Suche in Google Scholar

11. Emori, W., Louis, H., Adalikwu, S. A., Timothy, R. A., Cheng, C.-R., Gber, T. E., Agwamba, E. C., Owen, A. E., Liu, L., Offiong, O. E., Adeyinka, A. S. Molecular modeling of the spectroscopic, structural, and bioactive potential of tetrahydropalmatine: insight from experimental and theoretical approach. Polycyclic Aromat. Compd. 2023, 43, 5958–5975; https://doi.org/10.1080/10406638.2022.2110908.Suche in Google Scholar

12. Noureddine, O., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Marouani, H. Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. J. King Saud Univ. - Sci. 2022, 33, Article 1012832021; https://doi.org/10.1016/j.jksus.2020.101283.Suche in Google Scholar

13. Jumabaev, A., Holikulov, U., Hushvaktov, H., Issaoui, N., Ahmad, A. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 2023, 377, 121552. https://doi.org/10.1016/j.molliq.2023.121552.Suche in Google Scholar

14. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Fox, D. J.; Gaussian Inc. Wallingford: CT, 2009.Suche in Google Scholar

15. Jamróz, M. H. Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096.Suche in Google Scholar PubMed

16. Lu, T., Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J Comput. Chem. 2012, 33, 580–592. https://doi.org/10.1002/jcc.22885.Suche in Google Scholar PubMed

17. Andersson, P., Uvdal, P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J. Phys. Chem. 2005, 109, 2937–2941 https://doi.org/10.1021/jp045733a.Suche in Google Scholar PubMed

18. Arshad, M., Bibi, A., Mahmood, T., Asiri, A., Ayub, K. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study. Molecules 2015, 20, 5851–5874. https://doi.org/10.3390/molecules20045851.Suche in Google Scholar PubMed PubMed Central

19. Kumar, K. S., Haridharan, N., Ranjith, S., Nataraj, A. Studies on the DFT calculations and molecular docking of versatile molecular sensor 1-(6-Aminopyridin-2-yl)-3-(4-nitrophenyl) urea. Chem. Phys. Impact 2023, 6, 100139. https://doi.org/10.1016/j.chphi.2022.100139.Suche in Google Scholar

20. Celik, S., Akyuz, S., Ozel, A. E. Molecular modeling, DFT quantum chemical analysis, and molecular docking on edotecarin, an indolocarbazole anticancer agent. Mol. Cryst. Liq. Cryst. 2023, 753, 27–49. https://doi.org/10.1080/15421406.2022.2084240.Suche in Google Scholar

21. Mphahlele, M. J., Maluleka, M. M., Mokoena, T. P. Spectroscopic, XRD, Hirshfeld surface and density functional theory (DFT) studies of the non-covalent interactions in 2-hydroxy-3-iodo-5-nitroacetophenone. J. Mol. Struct. 2022, 1265, 133471. https://doi.org/10.1016/j.molstruc.2022.133471.Suche in Google Scholar

22. Sumithra, M., Sundaraganesan, N., Rajesh, R., Vetrivelan, V., Ilangovan, V., Javed, S., Muthu, S. Electron acceptor, excitation energies, oscillatory strength, spectroscopic and solvent effects on 5-amino-4,6-dichloro-2-(propylthio) pyrimidine - anticancer agent. Chem. Phys. Impact 2023, 6, 100145. https://doi.org/10.1016/j.chphi.2022.100145.Suche in Google Scholar

23. Eno, E. A., Louis, H., Unimuke, T. O., Gber, T. E., Mbonu, I. J., Ndubisi, C. J., Adalikwu, S. A. Reactivity, stability, and thermodynamics of para-methylpyridinium-based ionic liquids: insight from DFT, NCI, and QTAIM. J. Ionic Liquids 2022, 2, 100030. https://doi.org/10.1016/j.jil.2022.100030.Suche in Google Scholar

24. Jumabaev, A., Holikulov, U., Hushvaktov, H., Issaoui, N., Absanov, A. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 2023, 377, 121552. https://doi.org/10.1016/j.molliq.2023.121552.Suche in Google Scholar

25. Sukanya, R., Aruldhas, D., Hubert Joe, I., Balachandran, S. Spectroscopic and quantum chemical computation on molecular structure, AIM, ELF, RDG, NCI, and NLO activity of 4-VINYL benzoic acid: a DFT approach. J. Mol. Struct. 2022, 1253, 132273. https://doi.org/10.1016/j.molstruc.2021.132273.Suche in Google Scholar

26. Noreen, M., Rasool, N., Gull, Y., Zubair, M., Mahmood, T., Ayub, K., Nasim, F.-H., Yaqoob, A., Zia-Ul-Haq, M., de Feo, V., Synthesis density functional theory (DFT), urease inhibition and antimicrobial activities of 5-aryl thiophenes bearing sulphonylacetamide moieties. Molecules 2015, 20, 19914–19928. https://doi.org/10.3390/molecules201119661.Suche in Google Scholar PubMed PubMed Central

27. Medimagh, M., Issaoui, N., Gatfaoui, S., Al-Dossary, O., KazachenkoMarouani, A. S. H., Wojcik, M. J. Molecular modeling and biological activity analysis of new organic-inorganic hybrid: 2-(3,4-dihydroxyphenyl) ethanaminium nitrate. J. King Saud Univ. - Sci. 2021, 33, 101616. https://doi.org/10.1016/j.jksus.2021.101616.Suche in Google Scholar

28. Hamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K., Mahmood, T. Synthesis, crystal structures, computational studies and α-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. J. Mol. Struct. 2020, 1200, 127085. https://doi.org/10.1016/j.molstruc.2019.127085.Suche in Google Scholar

29. Raajaraman, B. R., Sheela, N. R., Muthu, S. Quantum chemical, vibrational spectroscopic and molecular docking studies of 1-(diphenylmethyl)piperazine. Polycyclic Aromat. Compd. 2022, 42, 2672–2692. https://doi.org/10.1080/10406638.2020.1852273.Suche in Google Scholar

30. Sumithra, M., Sundaraganesan, N., Venkata Prasad, K., Rajesh, R., Vetrivelan, V., Ilangovan, V., Ahmad, I., Muthu, S. Effect of green solvents physical, chemical, biological and bonding nature on 5-acetyl-thiophene-2-carboxylic acid by DFT and TD-DFT approach – an antiviral agent. J. Indian Chem. Soc. 2023, 100, 100867. https://doi.org/10.1016/j.jics.2022.100867.Suche in Google Scholar

31. Rekik, N., Issaoui, N., Ghalla, H., Oujia, B., Wójcik, M. J. Infrared spectral density of H-bonds within the strong anharmonic coupling theory: indirect relaxation effect. J. Mol. Struct. 2007, 844, 21–31. https://doi.org/10.1016/j.molstruc.2007.02.040.Suche in Google Scholar

32. Unimuke, T. O., Louis, H., Emori, W., Idante, P. S., Agwamba, E. C., Nwobodo, I. C., Kun, W., Cheng, C.-R, Adalikwu, S. A., Bassey, V. M., Anyama, C. A. Spectroscopic and molecular electronic property investigation of 2-phenylpyrimidine-4, 6-diamine via 1H NMR, UV–vis, FT-Raman, FT-IR, and DFT approach. J. Mol. Struct. 2022, 1263, 133195. https://doi.org/10.1016/j.molstruc.2022.133195.Suche in Google Scholar

33. Ojha, J. K., Ramesh, G., Reddy, B. V. Structure, chemical reactivity, NBO, MEP analysis and thermodynamic parameters of pentamethyl benzene using DFT study. Chem. Phys. Impact 2023, 7, 100280. https://doi.org/10.1016/j.chphi.2023.100280.Suche in Google Scholar

34. Saghiri, K., Daoud, I., Melkemi, N., Mesli, F. Molecular docking/dynamics simulations, MEP analysis, and pharmacokinetics prediction of some with angulatin A derivatives as allosteric glutaminase C inhibitors in breast cancer. Chem. Data Collect. 2023, 46, 101044. https://doi.org/10.1016/j.cdc.2023.101044.Suche in Google Scholar

35. Vennila, M., Rathikha, R., Muthu, S., Jeelani, A., Ahmad, I. Theoretical structural analysis (FT-IR, FT-R), solvent effect on electronic parameters NLO, FMO, NBO, MEP, UV (IEFPCM model), Fukui function evaluation with pharmacological analysis on methyl nicotinate. Comput. Theor. Chem. 2022, 1217, 113890. https://doi.org/10.1016/j.comptc.2022.113890.Suche in Google Scholar

36. Habib Rahuman, M., Muthu, S., Raajaraman, B. R., Raja, M., Umamahesvari, H. Investigations on 2-(4-Cyanophenylamino) acetic acid by FT-IR, FT-Raman, NMR and UV-Vis spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui function) and molecular docking studies. Heliyon 2020, 6, e04976. https://doi.org/10.1016/j.heliyon.2020.e04976.Suche in Google Scholar PubMed PubMed Central

37. Selvakumari, S., Potla, K. M., Shanthi, D., Ahmad, I., Muthu, S. Solvent effect on molecular, electronic parameters, topological analysis and Fukui function evaluation with biological studies of imidazo [1, 2-a] pyridine-8-carboxylic acid. J. Mol. Liq. 2023, 382, 121863. https://doi.org/10.1016/j.molliq.2023.121863.Suche in Google Scholar

38. Vennila, M., Rathikha, R., Muthu, S., Jeelani, A., Ahmad, I. Structural, spectral inspection, electronic properties in different solvents, Fukui functions, 6-acetyl-2H-1,4-benzoxazin-3(4H)-one – multiple sclerosis and auto immune disorders therapeutics. J. Mol. Liq. 2022, 359, 119248. https://doi.org/10.1016/j.molliq.2022.119248.Suche in Google Scholar

39. Cheerlin Mishma, J. N., Bena Jothy, V., Ahmad, I., Narayana, B., Kodlady, S. N., Muthu, S. Solvent potential effects (topological aspects, electron excitation), spectral characterization and biological attributes of NLO active 1-(2,4-dinitrophenyl)-2-((E)-3-phenylallylidene) hydrazine: multiple anti tuberculosis agent. J. Mol. Liq. 2023, 376, 121439. https://doi.org/10.1016/j.molliq.2023.121439.Suche in Google Scholar

40. Saral, A., Sudha, P., Muthu, S., Sevvanthi, S., Irfan, A., Molecular structure spectroscopic elucidation, IEFPCM solvation (UV–Vis, MEP, FMO, NBO, NLO), molecular docking and biological assessment studies of lepidine (4-Methylquinoline). J. Mol. Liq. 2022, 345, 118249. https://doi.org/10.1016/j.molliq.2021.118249.Suche in Google Scholar

41. Manjusha, P., Prasana, J. C., Muthu, S., Fathima Rizwana, B. Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: an antiprotozoal agent. Comput. Biol. Chem. 2020, 88, 107330. https://doi.org/10.1016/j.compbiolchem.2020.107330.Suche in Google Scholar PubMed

42. Alghamdi, S. K., Abbas, F., Hussein, R. K., Alhamzani, A. G., El‐Shamy, N. T. Spectroscopic characterization (IR, UV-vis), and HOMO-LUMO, MEP, NLO, NBO analysis and the antifungal activity for 4-bromo-N-(2-nitrophenyl) benzamide; using DFT modeling and in silico molecular docking. J. Mol. Struct. 2023, 1271, 134001. https://doi.org/10.1016/j.molstruc.2022.134001.Suche in Google Scholar

Received: 2023-11-13
Accepted: 2023-12-03
Published Online: 2023-12-22
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0462/html
Button zum nach oben scrollen