Home Molecular level interaction, electrons excitation properties, solvent effect using IEFPCM investigation, topological surface, and docking analysis of 4-pyrrolidin-2-yl-pyridine
Article
Licensed
Unlicensed Requires Authentication

Molecular level interaction, electrons excitation properties, solvent effect using IEFPCM investigation, topological surface, and docking analysis of 4-pyrrolidin-2-yl-pyridine

  • Uma Barathan , Selvakumari Selvaraj , Shine Kadaikunnan , Ghulam Abbas and Muthu Sambantham EMAIL logo
Published/Copyright: January 9, 2024

Abstract

Optimisation of molecular geometry of the headline compound, 4-pyrrolidin-2-yl-pyridine (4P2YLP) was achieved theoretically exercising Density Functional Theory using B3LYP standard approach utilising basis set, 6-311++G(d,p). Using Gaussian 09, HOMO–LUMO analysis was achieved to comprehend the chemical activity and electronic properties of the heading compound. The least HOMO–LUMO gap was obtained for gas phase (5.6486). Bonding interlinkage of the fragments is accomplished by Natural Bonding Orbitals (NBO), as steadiness and chemical reactivity depend on the border molecular orbitals. The nucleophilic & electrophilic spots along with 3D charge transmission areas are determined using the Molecular Electrostatic Potential (MEP). Multiwfn 3.8 software with Pauli Repulsion (PR) & electron localization has been used to conduct ELF and LOL research. While LOL simply displays the most closely spaced orbitals overlapping, ELF displays the electron pair density. Non-linear response properties are analysed in a variety of solvents. The dipole moment (1.9039), polarizability (3.23017E-23 esu) & first order hyperpolarizability (1.51981E-30 esu) of water are the highest values among the selected solvents. Different solvents endured UV–Vis analysis employing TD-DFT technique and the absorption of maximum wavelength is accomplished. Fructose 5-dehydrogenase inhibitor activity by docking is investigated using molecular modelling procedures.

Keywords: DFT; docking; NLO; MEP; NBO; Fukui

Corresponding author: Muthu Sambantham, Department of Physics, Arignar Anna Government Arts College, Cheyyar 604407, Tamil Nadu, India, E-mail:

Acknowledgements

The authors convey their sincere appreciation to the Researchers Supporting Project Number (RSPD2023R696), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: This work does not contain any studies with human participants or animals by any of the authors.

  2. Author contributions: UB Writing—original draft preparation, formal analysis. SS conceptualization, methodology. SK Data curation, resources, supervision, writing—review and editing, project administration, Software. GA conceptualization, methodology, Software, supervision. MS Conceptualization, resources, formal analysis, resources.

  3. Competing interests: The authors declare no conflicts of interest.

  4. Research funding: Not applicable.

  5. Data availability: The data presented in this work may be requested from the corresponding author.

References

1. Hadaji, E. G., Ouammou, A., Bouachrine, M. QSAR Study of Anthra[1,9-d]Pyrazol-6(2H)-One Derivatives as Potential Anticancer Agents Using Statistical Methods. Adv. Chem. 2018, 2018, 1–16; https://doi.org/10.1155/2018/3121802.Search in Google Scholar

2. Razzaq, H., Qureshi, R., Janjua, F., Saira, N. K., Saleemi, S. Charge Transfer Complexes of Picolines with Sigma- and Pi-Acceptors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 70, 1034–1040; https://doi.org/10.1016/j.saa.2007.10.030.Search in Google Scholar PubMed

3. Cavallito, C. J., Gray, A. P. Chemical Nature and Pharmacological Actions of Quaternary Ammonium Salts. In Fortschritte der Arzneimittelforschung/Progress in Drug Research/Progres des recherches pharmaceutiques; Jucker, E., Ed.; Springer Nature, Birkh€auser Basel: USA, 1960; pp. 135–224.10.1007/978-3-0348-7038-2_3Search in Google Scholar PubMed

4. Jose, S. P., Mohan, S. Vibrational Spectra and Normal co-Ordinate Analysis of 2-Aminopyridine and 2-Amino Picoline. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 64, 240–245; https://doi.org/10.1016/j.saa.2005.06.043.Search in Google Scholar PubMed

5. Petri, G.Li, Raimondi, M. V., Spano, V., Holl, R., Barraja, P., Montalbano, A. Pyrrolidine in Drug Discovery: A Versatile Scaffold for Novel Biologically Active Compounds. Top. Curr. Chem. 2021, 379, 34; https://doi.org/10.1007/s41061-021-00347-5.Search in Google Scholar PubMed PubMed Central

6. Seckl, J. R., Walker, B. R. Minireview: 11βhydroxysteroid Dehydrogenase Type 1 — A Tissue Specific Amplifier of Glucocorticoid Action. Endocrinology 2001, 142, 1371–1376; https://doi.org/10.1210/endo.142.4.8114.Search in Google Scholar PubMed

7. Wamil, M., Seckl, J. R. Inhibition of 11βhydroxysteroid Dehydrogenase Type 1 as a Promising Therapeutic Target. Drug Discov. Today 2007, 12, 504–520; https://doi.org/10.1016/j.drudis.2007.06.001.Search in Google Scholar PubMed

8. Lipson, V. V., Zamigajlo, L. L., Petrova, O. N. Development of 11βHSD1 Inhibitors for the Treatment of Metabolic Syndrome. Ukr. Bioorg. Acta 2011, 2, 3–13.Search in Google Scholar

9. Cheng, H., Hoffman, J., Le, P., Nair, S. K., Cripps, S., Matthews, J., Smith, C., Yang, M., Kupchinsky, S., Dress, K., Edwards, M., Cole, B., Walters, E., Loh, C., Ermolieff, J., Fanjul, A., Bhat, G. B., Herrera, J., Pauly, T., Hosea, N., Rejto, P., Rejto, P. The Development and SAR of Pyrrolidine Carboxamide 11β-HSD1 Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 2897–2902; https://doi.org/10.1016/j.bmcl.2010.03.032.Search in Google Scholar PubMed

10. Rusew, R., Kurteva, V., Shivachev, B. Novel Quaternary Ammonium Derivatives of 4-Pyrrolidino Pyridine: Synthesis, Structural, Thermal, and Antibacterial Studies. Crystals 2020, 10, 339; https://doi.org/10.3390/cryst10050339.Search in Google Scholar

11. Al-Otaibi, J. S., Mary, Y. S., Mary, Y. S., Krátký, M., Vinsova, J., Mahmood, T., Gamberini, M. C., Rajendran Nair, D. S. TD-DFT, DFT, Docking, MD Simulations, and Concentration-dependent SERS Investigations of a Bioactive Trifluoromethyl Derivative Having Human Acetylcholinesterase and Butyrylcholinesterase in Silver Colloids. J. Mol. Model. 2023, 29, 271; https://doi.org/10.1007/s00894-023-05679-1.Search in Google Scholar PubMed

12. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., ̈ Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford CT, 2009.Search in Google Scholar

13. Ullah, F., Kosar, N., Ayub, K., Mahmood, T. Superalkalis as a Source of Diffuse Excess Electrons in Newly Designed Inorganic Electrides with Remarkable Nonlinear Response and Deep Ultraviolet Transparency: A DFT Study. Appl. Surf. Sci. 2019, 483, 1118–1128; https://doi.org/10.1016/j.apsusc.2019.04.042.Search in Google Scholar

14. Kosar, N., Sajid, H., Ahmed, M. Z., Ayub, K., Mahmood, T. Superalkalis Fabricated Te-Containing [8] Circulenes as Outstanding NLO Materials; a DFT Perspective. Comput. Theor. Chem. 2023, 1226, 114226; https://doi.org/10.1016/j.comptc.2023.114226.Search in Google Scholar

15. Adole, V. A., Waghchaure, R. H., Pathade, S. S., Patil, M. R., Pawar, T. B., Jagdale, B. S. Solvent-Free Grindstone Synthesis of Four New (E)-7-(arylidene)-Indanones and Their Structural, Spectroscopic and Quantum Chemical Study: A Comprehensive Theoretical and Experimental Exploration. Mol. Simul. 2020, 46, 1045–1054; https://doi.org/10.1080/08927022.2020.1800690.Search in Google Scholar

16. Thamarai, A., Vadamalar, R., Raja, M., Muthu, S., Narayana, B., Ramesh, P., RajMuhamed, R., Sevvanthi, S., Aayisha, S. Molecular Structure Interpretation, Spectroscopic (FT-IR, FT-Raman), Electronic Solvation (UV–Vis, HOMO–LUMO and NLO) Properties and Biological Evaluation of (2E)-3-(biphenyl-4-Yl)-1-(4-Bromophenyl)prop-2-En-1-One: Experimental and Computational Modeling Approach. J. Spect. Acta Part A 2020, 226, 117609; https://doi.org/10.1016/j.saa.2019.117609.Search in Google Scholar

17. Lu, T., Chen, F. Multiwfn: a Multifunctional Wavefunction Analyser. J. Comp. Chem. 2012, 33, 33580–33592.10.1002/jcc.22885Search in Google Scholar

18. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662; https://doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b.10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BSearch in Google Scholar

19. The Pymol Molecular Graphics System, LLC, Schordinger. Version 1.5.0.4. 2009.Search in Google Scholar

20. Medimagh, M., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Kazachenko, A. S., Marouani, H., Wojcik, M. J. Molecular Modeling and Biological Activity Analysis of New Organic-Inorganic Hybrid: 2-(3,4-Dihydroxyphenyl) Ethanaminium Nitrate. J. King Saud Univ. Sci. 2021, 33, 101616; https://doi.org/10.1016/j.jksus.2021.101616.Search in Google Scholar

21. Selvakumari, S., Venkataraju, C., Muthu, S., Irfan, A., Shanthi, D. Donor Acceptor Groups Effect, Polar Protic Solvents Influence on Electronic Properties and Reactivity of 2-Chloropyridine-4-Carboxylic Acid. J. Indian Chem. Soc. 2022, 99, 100478; https://doi.org/10.1016/j.jics.2022.100478.Search in Google Scholar

22. Chithra, S., Mani, G., Kumar, M., Sevvanthi, S., Asif, F. B., Muthu, S., Niranjana Devi, R., Irfan, A. Anal. Chem. Lett. 2021, 11, 886–898; https://doi.org/10.1080/22297928.2021.1978315.Search in Google Scholar

23. Szafran, M., Komasa, A., Bartoszak-Adamska, E. J. Mol. Struct. 2007, 827, 101–107; https://doi.org/10.1016/j.molstruc.2006.05.012.Search in Google Scholar

24. Sagdinc, S. G., Azkeskin, C., Esme, A. Theoretical and Spectroscopic Studies of a Tricyclic Antidepressant, Imipramine Hydrochloride. J. Mol. Struct. 2018, 1161, 169–184; https://doi.org/10.1016/j.molstruc.2018.02.056.Search in Google Scholar

25. Daghar, C., Issaoui, N., Roisnel, T., Dorcet, V., Marouani, H. Empirical and Computational Studies on Newly Synthesis Cyclohexylammonium Perchlorate. J. Mol. Struct. 2021, 1230, 129820; https://doi.org/10.1016/j.molstruc.2020.129820.Search in Google Scholar

26. Raissi, H., Jalbout, A. F., Yoosefian, M., Fazli, M., Nowroozi, A., Shahinin, M., DeLeon, A. Int. J. Quantum Chem. 2009, 110, 821–830; https://doi.org/10.1002/qua.21795.Search in Google Scholar

27. Yoosefian, M., Raissi, H., Nadim, E. S., Farzad, F., Fazli, M., Karimzade, E., Nowroosi, A. Int. J. Quantum Chem. 2010, 111, 3505–3516; https://doi.org/10.1002/qua.22793.Search in Google Scholar

28. Raissi, H., Yoosefian, M., Hajizadeh, A., Imampour, J. S., Karimi, M., Farzad, F. Bull. Chem. Soc. Jpn. 2012, 85, 87–92; https://doi.org/10.1246/bcsj.20110177.Search in Google Scholar

29. Gatfaoui, S., Issaoui, N., Roisnel, T., Marouani, H. Synthesis, Experimental and Computational Study of a Non-Centrosymmetric Material 3-Methylbenzylammonium Trioxonitrate. J. Mol. Struct. 2021, 1225, 129132; https://doi.org/10.1016/j.molstruc.2020.129132.Search in Google Scholar

30. Sagaama, A., Issaoui, N., Al-Dossary, O., Kazachenko, A. S., Wojcik, M. J. Non Covalent Interactions and Molecular Docking Studies on Morphine Compound. J. King Saud Univ. Sci. 2021, 33, https://doi.org/10.1016/j.jksus.2021.101606.Search in Google Scholar

31. Sushma Priya, Y., Ramachandra Rao, K., Chalapathi, P. V., Veeraiah, A., Srikanth, K. E., Sheena Mary, Y., Thomas, R. Intricate Spectroscopic Profiling, Light Harvesting Studies and Other Quantum Mechanical Properties of 3-Phenyl-5-Isooxazolone Using Experimental and Computational Strategies. J. Mol. Struct. 2020, 1203, 127461. https://doi.org/10.1016/j.molstruc.2019.127461.Search in Google Scholar

32. Kazachenko, A. S., Issaoui, N., Medimag, M., Fetisova, O. Y., Berezhnaya, Y. D., Elsuf’ev, E. V., Al-Dossary, O. M., Wojcik, M. J., Xiang, Z., Bousiakou, L. G. Experimental and Theoretical Study of the Sulfamic Acid-Urea Deep Eutectic Solvent. J. Mol. Liq., 363, 119859; https://doi.org/10.1016/j.molliq.2022.119859.Search in Google Scholar

33. Selvakumari, S., Irfan, A., Muthu, S. Solvent–Solute Interactions, Electronic Properties, Topological and Biological Explorations of 6-Bromo-7-Methylimidazo[1,2-a] Pyridine. J. Mol. Liq. 2023, 376, 121437; https://doi.org/10.1016/j.molliq.2023.121437.Search in Google Scholar

34. Jumabaev, A., Holikulov, U., Hushvaktov, H., IssaouiAbsanov, N. A. Intermolecular Interactions in Ethanol Solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG Analysis. J. Mol. Liq. 2023, 377, 121552; https://doi.org/10.1016/j.molliq.2023.121552.Search in Google Scholar

35. James, C., Raj, A. A., Reghunathan, R., Jayakumar, V. S., Joe, I. H. Structural Conformation and Vibrational Spectroscopic Studies of 2,6-Bis(p-N, Ndimethyl Benzylidene)cyclohexanone Using Density Functional Theory. J. Raman Spectrosc. 2006, 37, 1381–1392; https://doi.org/10.1002/jrs.1554.Search in Google Scholar

36. Sangeetha, P., Prabakaran, A., Issaoui, N., Al-Dossary, O. M., Bousiakoug, L. G. Molecular Level Interaction of Solvents (Water, Benzene and DMSO) Analysis of the 2-Bromo-6-Nitrotoluene’s Reactive Charge Transfer, Docking, and Spectroscopic Properties. J. King Saud Univ. Sci. 2023, 35, 102789; https://doi.org/10.1016/j.jksus.2023.102789.Search in Google Scholar

37. Murray, J. S., Sen, K. Molecular Electrostatic Potential: Concepts and Applications; Elsevier: Amsterdam, 1996.Search in Google Scholar

38. Muthu, S., Maheswari, J. U., Sundius, T. Molecular Structural, Non-linear Optical, Second Order Perturbation and Fukui Studies of Indole-3-Aldehyde Using Density Functional Calculations. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 106, 299–309; https://doi.org/10.1016/j.saa.2012.12.080.Search in Google Scholar PubMed

39. Ayers, P. W., Parr, R. G. Variational Principals for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited. Parr, J. Am. Phys. Soc. 2000, 122, 2010–2018; https://doi.org/10.1021/ja9924039.Search in Google Scholar

40. Fukui, K. A Study of Correlation of the Order of Chemical Reactivity of a Sequence of Binary Compounds of Nitrogen and Oxygen in Terms of Frontier Orbital Theory. Science 1982, 218, 747–754; https://doi.org/10.1126/science.218.4574.747.Search in Google Scholar PubMed

41. Vennila, M., Rathikha, R., Muthu, S., Jeelani, A., Ahmad, I. Structural, Spectral Inspection, Electronic Properties in Different Solvents, Fukui Functions, 6-Acetyl-2H1,4-Benzoxazin-3(4H)-One – Multiple Sclerosis and Auto Immune Disorders Therapeutics. J. Mol. Liquids 2022, 359, 119248; https://doi.org/10.1016/j.molliq.2022.119248.Search in Google Scholar

42. Mohan, J. Organic Spectroscopy: Principles and Applications; Narosa Publishing House: New Delhi, 2001.Search in Google Scholar

43. Barnes, A. J., Majid, M. A., Stuckey, M. A., Gregory, P., Stead, C. V. The Resonance Raman Spectra of Orange II and Para Red: molecular structure and Vibrational Assignment. Spect. Chim. Acta A 1985, 41, 629–635; https://doi.org/10.1016/0584-8539(85)80050-7.Search in Google Scholar

44. Selvakumari, S., Potla, K. M., Shanthi, D., Irfan, A., Muthu, S. Solvent Effect on Molecular, Electronic Parameters, Topological Analysis and Fukui Function Evaluation with Biological Studies of Imidazo [1, 2-a] Pyridine-8-Carboxylic Acid. J. Mol. Liq. 2023, 382, 121863; https://doi.org/10.1016/j.molliq.2023.121863.Search in Google Scholar

45. Selvakumari, S., Venkataraju, C., Muthu, S., Sangeetha, P., Rajesh, R. Vibrational Spectroscopic, Electronic Influences, Reactivity Analysis and Molecular Docking Studies of 2-Fluoro-4-Iodo-5-Methylpyridine. Spectrosc. Lett. 2023, 56, 14–27; https://doi.org/10.1080/00387010.2022.2160462.Search in Google Scholar

46. Habli, H., Mejrissi, L., Issaoui, N., Yaghmour, S. J., Oujia, B., Gadéa, F. X. Ab Initio Calculation of the Electronic Structure of the Strontium Hydride Ion (SrH+). Int. J. Quantum Chem. 2015, 115, 172–186; https://doi.org/10.1002/qua.24813.Search in Google Scholar

47. Sakthivel, S., Alagesan, T., Muthu, S., Abraham, C. S., Geetha, E. Quantum Mechanical, Spectroscopic Study (FT-IR and FT – Raman), NBO Analysis, HOMO–LUMO, First Order Hyperpolarizability and Docking Studies of a Non-Steroidal Anti-Inflammatory Compound. J. Mol. Struct. 2018, 1156, 645–656; https://doi.org/10.1016/j.molstruc.2017.12.024.Search in Google Scholar

48. Sumithra, M., Sundaraganesan, N., Rajesh, R., Ilangovan, V., Irfan, A., Muthu, S. Electron Density, Charge Transfer, Solvent Effect and Molecular Spectroscopic Studies on 2,2-Dimethyl-N-Pyridin-4-Yl-Propionamide – A Potential Antioxidant. Comput. Theor. Chem. 2023, 1223, 114103; https://doi.org/10.1016/j.comptc.2023.114103.Search in Google Scholar

49. Sangeetha, P., Alharbi, N. S., Kazachenko, A. S., Muthu, S., Rajesh, R. Spectroscopic Analysis of 2-Amino-1-Naphthalenesulfonic Acid, Molecular Docking, and Evaluation of the Electronic Properties of Several Solvents. Spectrosc. Lett. 2023, 56, 323–342; https://doi.org/10.1080/00387010.2023.2210208.Search in Google Scholar

50. Morris, G. M., Huey, R., Olson, A. J. Using AutoDock for Ligand-Receptor Docking. Curr. Protoc. Bioinf. 2008, 24, 1–40; https://doi.org/10.1002/0471250953.bi0814s24.Search in Google Scholar PubMed

51. Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., Zardecki, C. The Protein Data Bank. Acta Crystallogr. Sect. D Biol. Crystallogr. 2002, 58, 899–907; https://doi.org/10.1107/s0907444902003451.Search in Google Scholar PubMed

Received: 2023-11-21
Accepted: 2023-12-10
Published Online: 2024-01-09
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0481/html
Scroll to top button