Home Physical Sciences Exploring optical and electrochemical studies on thulium selenite (TmSeO3)
Article
Licensed
Unlicensed Requires Authentication

Exploring optical and electrochemical studies on thulium selenite (TmSeO3)

  • Ariponnammal Shanmuga Sundaram EMAIL logo , Basil Ralph Nesam Gregory and Shanmugha Soundare Sivakumar
Published/Copyright: March 12, 2024

Abstract

Thulium selenite (TmSeO3) has been synthesized by precipitation method. It shows interesting smooth surface with nearly non-symmetric texture similar to water droplets spreading on hydrophobic surface. TmSeO3 is found to be monoclinic structure with lattice parameters a = 5.919±0.01 Å, b = 12.422±0.01 Å, c = 8.717±0.01 Å, α = γ = 90°, β = 106.01° and V = 616.1 Å3. Fourier transform infrared spectroscopy confirms the presence of Tm–Se bonding. X-ray photo emission spectrum confirmed the presence of thulium, selenium and oxygen in the samples in oxide form. Magnetic study between 300 and 20 K, shows decrease of magnetic moment with temperature, then reaches saturation and aligns all thulium spins. This results cooperative interaction of thulium spins. MH curve at 300 K confirms the paramagnetic nature of sample. Cyclic voltammogram of three electrode system, manifests electric double layer capacitance with a potential window of 0.55 V. Specific capacitance is 102 F/g. Chronopotentiometry analysis shows 75 F/g specific capacitance, 11 Wh kg−1 energy density, and 275 W kg−1 power density. Impedance analysis confirms electric double layer capacitor behavior. Hence, TmSeO3 electrode based symmetric supercapacitor device was successfully fabricated and tested by two electrode configuration in aqueous electrolyte of KOH. A specific capacitance of 64.60 F/g at 1 A/g within a potential window of 1.85 V was achieved. Impedance analysis also confirms electric double layer capacitor nature with low series resistance of 0.2596 Ω and charge transfer resistance of 1.6352 Ω. The improved cycling performance after 4000 cycles is 51.5 % specific capacitance retention. Thus, symmetric supercapacitor electrodes based TmSeO3 materials are expected to have good electrochemical properties and good stability for energy storage and conversion applications. Furthur, optical parameters 5.28 eV energy gap, 0.4924 eV Urbach energy value and 1.959 refractive index are determined.


Corresponding author: Ariponnammal Shanmuga Sundaram, Department of Physics, Gandhigram Rural Institute, Deemed To Be University, Gandhigram 624302, Dindigul District, Tamilnadu, India, E-mail:

Acknowledgments

Authors are thankful to SAIF-IITM, Chennai, India for access to their low temperature facilities.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Patil, P. H., Kulkarni, V. V., Jadhav, S. A. An overview of recent advancements in conducting polymer–metal oxide nanocomposites for supercapacitor application. J. Compos. Sci. 2022, 6, 363. https://doi.org/10.3390/jcs6120363.Search in Google Scholar

2. Ye, K., Li, K., Lu, Y., Guo, Z., Ni, N., Liu, H., Huang, Y., Ji, H., Wang, P. An overview of advanced methods for the characterization of oxygen vacancies in materials. Trends Anal. Chem. 2019, 116, 102. https://doi.org/10.1016/j.trac.2019.05.002.Search in Google Scholar

3. Ariponnammal, S., Shalini, S., Anusha, S. Tailoring room temperature ferromagnetism and observation of electrolyte of widest potential window in Gd0.75 Se nano particles. Cryst. Res. Technol. 2022, 57, 2200106. https://doi.org/10.1002/crat.202200106.Search in Google Scholar

4. Aghazadeh, M., Rad, H. F. In situ grown of thulium/samarium mixed metal–organic frameworks onto Ni foam as outstanding binder-free battery type high-performance electrode for supercapacitors. J. Energy Storage 2022, 53, 105194. https://doi.org/10.1016/j.est.2022.105194.Search in Google Scholar

5. https://en.wikipedia.org/wiki/Thulium.Search in Google Scholar

6. Padmanaban, A., Padmanathan, N., Dhanasekaran, T., Manigandan, R., Srinandhini, S., Sivaprakash, P., Narayanan, V. Hexagonal phase Pt-doped cobalt telluride magnetic semiconductor nanoflakes for electrochemical sensing of dopamine. J. Electroanal. Chem. 2020, 877, 114658. https://doi.org/10.1016/j.jelechem.2020.114658.Search in Google Scholar

7. https://materialsproject.org/materials/mp-768396/#diffraction_patterns.Search in Google Scholar

8. Modwi, A., Taha, K. K., Khezami, L., Boudina, M., Khairy, M., Al-Duaij, O. K., Talab, S. Dependence of the electrical properties of Cu-doped ZnO nanoparticles decorated by Ag atoms. Z. Phys. Chem. 2021, 235, 745. https://doi.org/10.1515/zpch-2019-1473.Search in Google Scholar

9. Ariponnammal, S., Anusha, S. Structural and spectroscopic characterization of ytterbium tri chloride (YbCl3). Mater. Today. Proc. 2022, 66, 1606. https://doi.org/10.1016/j.matpr.2022.05.248.Search in Google Scholar

10. https://www.researchgate.net/post/Are_crystallite_size_and_particle_.Search in Google Scholar

11. Ariponnammal, S., Shalini, S., Nishadini Devi, S. N. Structural, surface morphological and low temperature studies on gadolinium tri chloride (GdCl3). Mater. Today Proc. 2021, 35, 39. https://doi.org/10.1016/j.matpr.2019.05.406.Search in Google Scholar

12. Mohan, J. Organic Spectroscopy; Narosa Publication House: New Delhi, 2000.Search in Google Scholar

13. Silverstein, R. M., Webster, F. X. Spectrometric Identification of Organic Compounds, 6th ed.; John Wiley and Sons Inc: USA, 1991.Search in Google Scholar

14. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: USA, 1986.Search in Google Scholar

15. Uwamino, Y., Tsuge, A., Ishizuka, T., Yamatera, H. X-ray photoelectron spectroscopy of rare earth halides. Bull. Chem. Soc. Jpn. 1986, 59, 2263. https://doi.org/10.1246/bcsj.59.2263.Search in Google Scholar

16. https://srdata.nist.gov/xps/XPSDetailPage.aspx?AllDataNo=43780].Search in Google Scholar

17. Aguilar, T., Navas, J., Alcántara, R., Fernández-Lorenzo, C., Blanco, G., Sánchez-Coronilla, A., Martín-Calleja, J. Surface thulium-doped TiO2 nanoparticles used as photoelectrodes in dye-sensitized solar cells: improving the open-circuit voltage. Appl. Phys. A 2015, 121, 1261. https://doi.org/10.1007/s00339-015-9503-7.Search in Google Scholar

18. Moulder, J. F., Stickle, W. F., Sobol, W. M., Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: USA, 1992.Search in Google Scholar

19. Singh, J., Srivastava, M., Roychoudhury, A., Dong, W. L., Lee, S. H., Malhotra, B. D. Optical and electro-catalytic studies of nanostructured thulium oxide for vitamin C detection. J. Alloys Compd. 2013, 578, 405. https://doi.org/10.1016/j.jallcom.2013.06.026.Search in Google Scholar

20. Jackson, M. Magnetism of rare earth. IRM Quarterly 2000, 10, 3.Search in Google Scholar

21. Sivaprakash, P., Ashok Kumar, K., Subalakshmi, K., Bathula, C., Sandhu, S., Arumugam, S. Fabrication of high performance asymmetric supercapacitors with high energy and power density based on binary metal fluoride. Mater. Lett. 2020, 275, 128146. https://doi.org/10.1016/j.matlet.2020.128146.Search in Google Scholar

22. Gupta, H., Chakrabarti, S., Mothkuri, S., Padya, B., Rao, T. N., Jain, P. K. High performance supercapacitor based on 2D-MoS2 nanostructures. Mater. Today Proc. 2020, 26, 20. https://doi.org/10.1016/j.matpr.2019.04.198.Search in Google Scholar

23. Mohamed Ismail, M., Vigneshwaran, J., Arunbalaji, S., Mani, D., Arivanandhan, M., Jose, S. P., Ramasamy, J. Antimonene nanosheets with enhanced electrochemical performance for energy storage applications. Dalton Trans. 2020, 49, 13717. https://doi.org/10.1039/D0DT01753A.Search in Google Scholar

24. Wu, H., Lou, Z., Yang, H., Shen, G. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 2015, 7, 1921. https://doi.org/10.1039/C4NR06336H.Search in Google Scholar PubMed

25. Sankar, K. V., Kalpana, D., Selvan, R. K. Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications. J. Appl. Electrochem. 2012, 42, 463. https://doi.org/10.1007/s10800-012-0424-2.Search in Google Scholar

26. Zhang, J., Jiang, J., Zhao, X. S. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 2011, 115, 6448. https://doi.org/10.1021/jp200724h.Search in Google Scholar

27. Barzegar, F., Dangbegnon, J. K., Bello, A., Damilola, Y., Momodu, A. T., Johnson, C.Jr. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AIP Adv. 2015, 5, 097171. https://doi.org/10.1063/1.4931956.Search in Google Scholar

28. Chen, H., Zeng, S., Chen, M., Zhanga, Y., Li, Q. A new insight into the rechargeable mechanism of manganese dioxide based symmetric supercapacitors. RSC Adv. 2017, 7, 8561. https://doi.org/10.1039/C6RA28040D.Search in Google Scholar

29. Fan, Q., Ma, C., Wu, L., Wei, C., Wang, H., Song, Y., Shi, J. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode. RSC Adv. 2019, 9, 6419. https://doi.org/10.1039/C8RA07587E.Search in Google Scholar

30. Reddy, B. J., Vickraman, P., Justin, A. S. Synthesis and characterization of graphene/binary metal molybdate (graphene/Zn1−xNixMoO4) nanocomposite for supercapacitors. Phys. Status Solidi A 2019, 216, 1800595. https://doi.org/10.1002/pssa.201800595.Search in Google Scholar

31. Sarkar, A., Gopal Khan, G. Synthesis of BiFeO3 nanoparticle anchored TiO2-BiFeO3 nano-heterostructure and exploring its different electrochemical aspects as electrode. Mater. Today Proc. 2018, 5, 10177. https://doi.org/10.1016/j.matpr.2017.11.016.Search in Google Scholar

32. Arul Raja, T., Vickraman, P., Simon Justin, A., Joji Reddy, B. Microwave synthesis of zinc ammonium phosphate/reduced graphene oxide hybrid composite for high energy density supercapacitors. Phys. Status Solidi A 2020, 217, 1900736. https://doi.org/10.1002/pssa.201900736.Search in Google Scholar

33. Badawy, W. A., El-Rabiei, M. M., Helal, N. H., Nady, H. M. Electrochemical behavior and stability of Cu-Al-Ni alloys in NaOH solutions. Z. Phys. Chem. 2013, 227, 1143. https://doi.org/10.1524/zpch.2012.0347.Search in Google Scholar

34. Xie, J., Yang, P., Wang, Y., Qi, T., Lei, Y., Li, C. M. Puzzles and confusions in supercapacitor and battery: theory and solutions. J. Power Sources 2018, 401, 213. https://doi.org/10.1016/j.jpowsour.2018.08.090.Search in Google Scholar

35. Tariq, M. Electrochemistry of Br−/Br2 redox couple in acetonitrile, methanol and mix media of acetonitrile–methanol: an insight into redox behavior of bromide on platinum (Pt) and gold (Au) electrode. Z. Phys. Chem. 2019, 234, 295. https://doi.org/10.1515/zpch-2018-1321.Search in Google Scholar

36. Mei, B. A., Munteshari, O., Lau, J., Dunn, B., Pilon, L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys.Chem. C 2018, 122, 194. https://doi.org/10.1021/acs.jpcc.7b10582.Search in Google Scholar

37. https://partners.metrohm.com/GetDocumentPublic?action=get_dms_document&docid=2043973.Search in Google Scholar

38. Choi, W., Shin, H. C., Kim, J. M., Choi, J. Y., Yoon, W. S. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol. 2020, 11, 1. https://doi.org/10.33961/jecst.2019.00528.Search in Google Scholar

39. Randviir, E. P., Banks, C. E. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 2013, 5, 1098. https://doi.org/10.1039/c3ay26476a.Search in Google Scholar

40. Kumar, A., Kumar, N., Sharma, Y., Leu, J., Tseng, T. Y. Synthesis of free-standing flexible rGO/MWCNT Films for symmetric supercapacitor application. Nanoscale Res. Lett. 2019, 14, 266. https://doi.org/10.1186/s11671-019-3100-1.Search in Google Scholar PubMed PubMed Central

41. Ismail, M. M., Hong, Z. Y., Arivanandhan, M., Yang, T. C. K., Pan, G. T., Huang, C. M. In situ binder-free and hydrothermal growth of nano structured NiCo2S4/Ni electrodes for solid-state hybrid supercapacitors. Energies 2021, 14, 7114. https://doi.org/10.3390/en14217114.Search in Google Scholar

42. Isacfranklin, M., Rathinam, Y., Ganesan, R., Velauthapillai, D. Direct growth of binder-free CNTs on a nickel foam substrate for highly efficient symmetric supercapacitors. ACS Omega 2023, 8, 11700. https://doi.org/10.1021/acsomega.2c04998.Search in Google Scholar PubMed PubMed Central

43. Abraham, A. M., Lonkar, S. P., Pillai, V. V., Alhassan, S. M. Three-dimensional MoS2 nanodot-impregnated nickel foam electrodes for high-performance supercapacitor applications. ACS Omega 2020, 5, 11721. https://doi.org/10.1021/acsomega.0c01045.Search in Google Scholar PubMed PubMed Central

44. Swaminathan, K., Kuppusamy, R., Govindaraju, V., Thirugnanam, T., Dinesh, A., Ponnusamy, S., Iqbal, M., Ayyar, M. Effect of reducing agents on structural, morphological, optical and electrochemical properties of Mn2O3 nanoparticles by co-precipitation method. Z. Phys. Chem. 2024, 238, 239–260. https://doi.org/10.1515/zpch-2023-0391.Search in Google Scholar

45. Sivaprakash, P., Kumar, K. A., Muthukumaran, S., Pandurangan, A., Dixit, A., Arumugam, S. NiF2 as an efficient electrode material with high window potential of 1.8 V for high energy and power density asymmetric supercapacitor. J. Electroanal. Chem. 2020, 873, 114379. https://doi.org/10.1016/j.jelechem.2020.114379.Search in Google Scholar

46. Tahenti, M., Issaoui, N., Roisnel, T., Kazachenko, A. S., Iramain, M. A., Brandan, S. A., Al-Dossary, O., Kazachenko, A. S., Marouan, H. Highlighting non-covalent interactions to molecular structure, electronic and vibrational spectra in a new hybrid organic-inorganic cobalt complex: synthesis, experimental and computational study. Z. Phys. Chem. 2023, 237, 1775. https://doi.org/10.1515/zpch-2023-0332.Search in Google Scholar

47. Slimani, Y., Meena, S. S., Shirsath, S. E., Hannachi, E., Almessiere, M. A., Baykal, A., Sivakumar, R., Khlid, M., Batoo, Thakur, A., Ercan, I., Özçelik, B. Impact of magnetic spinel ferrite content on the structure, morphology, optical, and magneto-dielectric properties of BaTiO3 materials. Z. Phys. Chem. 2023, 237, 1753. https://doi.org/10.1515/zpch-2023-0215.Search in Google Scholar

48. Halimah, M. K., Faznny, M. F., Azlan, M. N., Sidek, H. A. A. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results. Phys. 2017, 7, 581. https://doi.org/10.1016/j.rinp.2017.01.014.Search in Google Scholar

49. Saudi, H., Adel, G. Physical and optical properties of CeO2 BaO B2O3 glasses. Optics 2017, 6, 17; https://doi.org/10.11648/j.optics.20170602.11.Search in Google Scholar

50. Zaldo, C. Lanthanide-based luminescent thermosensors: from bulk to nanoscale. Adv. Nanomater. 2018, 10, 335. https://doi.org/10.1016/B978-0-12-813840-3.00010-7.Search in Google Scholar

51. Khamlich, S., Abdullaeva, Z., Kennedy, J. V., Maaza, M. High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 2017, 405, 329. https://doi.org/10.1016/j.apsusc.2017.02.095.Search in Google Scholar

52. Nazir, A., Khalid, F., Rehman, S., Sarwar, M., Iqbal, M., Yaseen, M., Khan, M. I., Abbas, M. Structural, electric and dielectric properties of perovskite based nanoparticles for energy applications. Z. Phys. Chem. 2021, 235, 769. https://doi.org/10.1515/zpc-2019-1558.Search in Google Scholar

Received: 2023-10-24
Accepted: 2024-01-27
Published Online: 2024-03-12
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0404/pdf
Scroll to top button