Abstract
Thulium selenite (TmSeO3) has been synthesized by precipitation method. It shows interesting smooth surface with nearly non-symmetric texture similar to water droplets spreading on hydrophobic surface. TmSeO3 is found to be monoclinic structure with lattice parameters a = 5.919±0.01 Å, b = 12.422±0.01 Å, c = 8.717±0.01 Å, α = γ = 90°, β = 106.01° and V = 616.1 Å3. Fourier transform infrared spectroscopy confirms the presence of Tm–Se bonding. X-ray photo emission spectrum confirmed the presence of thulium, selenium and oxygen in the samples in oxide form. Magnetic study between 300 and 20 K, shows decrease of magnetic moment with temperature, then reaches saturation and aligns all thulium spins. This results cooperative interaction of thulium spins. M–H curve at 300 K confirms the paramagnetic nature of sample. Cyclic voltammogram of three electrode system, manifests electric double layer capacitance with a potential window of 0.55 V. Specific capacitance is 102 F/g. Chronopotentiometry analysis shows 75 F/g specific capacitance, 11 Wh kg−1 energy density, and 275 W kg−1 power density. Impedance analysis confirms electric double layer capacitor behavior. Hence, TmSeO3 electrode based symmetric supercapacitor device was successfully fabricated and tested by two electrode configuration in aqueous electrolyte of KOH. A specific capacitance of 64.60 F/g at 1 A/g within a potential window of 1.85 V was achieved. Impedance analysis also confirms electric double layer capacitor nature with low series resistance of 0.2596 Ω and charge transfer resistance of 1.6352 Ω. The improved cycling performance after 4000 cycles is 51.5 % specific capacitance retention. Thus, symmetric supercapacitor electrodes based TmSeO3 materials are expected to have good electrochemical properties and good stability for energy storage and conversion applications. Furthur, optical parameters 5.28 eV energy gap, 0.4924 eV Urbach energy value and 1.959 refractive index are determined.
Acknowledgments
Authors are thankful to SAIF-IITM, Chennai, India for access to their low temperature facilities.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Patil, P. H., Kulkarni, V. V., Jadhav, S. A. An overview of recent advancements in conducting polymer–metal oxide nanocomposites for supercapacitor application. J. Compos. Sci. 2022, 6, 363. https://doi.org/10.3390/jcs6120363.Search in Google Scholar
2. Ye, K., Li, K., Lu, Y., Guo, Z., Ni, N., Liu, H., Huang, Y., Ji, H., Wang, P. An overview of advanced methods for the characterization of oxygen vacancies in materials. Trends Anal. Chem. 2019, 116, 102. https://doi.org/10.1016/j.trac.2019.05.002.Search in Google Scholar
3. Ariponnammal, S., Shalini, S., Anusha, S. Tailoring room temperature ferromagnetism and observation of electrolyte of widest potential window in Gd0.75 Se nano particles. Cryst. Res. Technol. 2022, 57, 2200106. https://doi.org/10.1002/crat.202200106.Search in Google Scholar
4. Aghazadeh, M., Rad, H. F. In situ grown of thulium/samarium mixed metal–organic frameworks onto Ni foam as outstanding binder-free battery type high-performance electrode for supercapacitors. J. Energy Storage 2022, 53, 105194. https://doi.org/10.1016/j.est.2022.105194.Search in Google Scholar
5. https://en.wikipedia.org/wiki/Thulium.Search in Google Scholar
6. Padmanaban, A., Padmanathan, N., Dhanasekaran, T., Manigandan, R., Srinandhini, S., Sivaprakash, P., Narayanan, V. Hexagonal phase Pt-doped cobalt telluride magnetic semiconductor nanoflakes for electrochemical sensing of dopamine. J. Electroanal. Chem. 2020, 877, 114658. https://doi.org/10.1016/j.jelechem.2020.114658.Search in Google Scholar
7. https://materialsproject.org/materials/mp-768396/#diffraction_patterns.Search in Google Scholar
8. Modwi, A., Taha, K. K., Khezami, L., Boudina, M., Khairy, M., Al-Duaij, O. K., Talab, S. Dependence of the electrical properties of Cu-doped ZnO nanoparticles decorated by Ag atoms. Z. Phys. Chem. 2021, 235, 745. https://doi.org/10.1515/zpch-2019-1473.Search in Google Scholar
9. Ariponnammal, S., Anusha, S. Structural and spectroscopic characterization of ytterbium tri chloride (YbCl3). Mater. Today. Proc. 2022, 66, 1606. https://doi.org/10.1016/j.matpr.2022.05.248.Search in Google Scholar
10. https://www.researchgate.net/post/Are_crystallite_size_and_particle_.Search in Google Scholar
11. Ariponnammal, S., Shalini, S., Nishadini Devi, S. N. Structural, surface morphological and low temperature studies on gadolinium tri chloride (GdCl3). Mater. Today Proc. 2021, 35, 39. https://doi.org/10.1016/j.matpr.2019.05.406.Search in Google Scholar
12. Mohan, J. Organic Spectroscopy; Narosa Publication House: New Delhi, 2000.Search in Google Scholar
13. Silverstein, R. M., Webster, F. X. Spectrometric Identification of Organic Compounds, 6th ed.; John Wiley and Sons Inc: USA, 1991.Search in Google Scholar
14. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: USA, 1986.Search in Google Scholar
15. Uwamino, Y., Tsuge, A., Ishizuka, T., Yamatera, H. X-ray photoelectron spectroscopy of rare earth halides. Bull. Chem. Soc. Jpn. 1986, 59, 2263. https://doi.org/10.1246/bcsj.59.2263.Search in Google Scholar
16. https://srdata.nist.gov/xps/XPSDetailPage.aspx?AllDataNo=43780].Search in Google Scholar
17. Aguilar, T., Navas, J., Alcántara, R., Fernández-Lorenzo, C., Blanco, G., Sánchez-Coronilla, A., Martín-Calleja, J. Surface thulium-doped TiO2 nanoparticles used as photoelectrodes in dye-sensitized solar cells: improving the open-circuit voltage. Appl. Phys. A 2015, 121, 1261. https://doi.org/10.1007/s00339-015-9503-7.Search in Google Scholar
18. Moulder, J. F., Stickle, W. F., Sobol, W. M., Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: USA, 1992.Search in Google Scholar
19. Singh, J., Srivastava, M., Roychoudhury, A., Dong, W. L., Lee, S. H., Malhotra, B. D. Optical and electro-catalytic studies of nanostructured thulium oxide for vitamin C detection. J. Alloys Compd. 2013, 578, 405. https://doi.org/10.1016/j.jallcom.2013.06.026.Search in Google Scholar
20. Jackson, M. Magnetism of rare earth. IRM Quarterly 2000, 10, 3.Search in Google Scholar
21. Sivaprakash, P., Ashok Kumar, K., Subalakshmi, K., Bathula, C., Sandhu, S., Arumugam, S. Fabrication of high performance asymmetric supercapacitors with high energy and power density based on binary metal fluoride. Mater. Lett. 2020, 275, 128146. https://doi.org/10.1016/j.matlet.2020.128146.Search in Google Scholar
22. Gupta, H., Chakrabarti, S., Mothkuri, S., Padya, B., Rao, T. N., Jain, P. K. High performance supercapacitor based on 2D-MoS2 nanostructures. Mater. Today Proc. 2020, 26, 20. https://doi.org/10.1016/j.matpr.2019.04.198.Search in Google Scholar
23. Mohamed Ismail, M., Vigneshwaran, J., Arunbalaji, S., Mani, D., Arivanandhan, M., Jose, S. P., Ramasamy, J. Antimonene nanosheets with enhanced electrochemical performance for energy storage applications. Dalton Trans. 2020, 49, 13717. https://doi.org/10.1039/D0DT01753A.Search in Google Scholar
24. Wu, H., Lou, Z., Yang, H., Shen, G. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 2015, 7, 1921. https://doi.org/10.1039/C4NR06336H.Search in Google Scholar PubMed
25. Sankar, K. V., Kalpana, D., Selvan, R. K. Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications. J. Appl. Electrochem. 2012, 42, 463. https://doi.org/10.1007/s10800-012-0424-2.Search in Google Scholar
26. Zhang, J., Jiang, J., Zhao, X. S. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 2011, 115, 6448. https://doi.org/10.1021/jp200724h.Search in Google Scholar
27. Barzegar, F., Dangbegnon, J. K., Bello, A., Damilola, Y., Momodu, A. T., Johnson, C.Jr. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AIP Adv. 2015, 5, 097171. https://doi.org/10.1063/1.4931956.Search in Google Scholar
28. Chen, H., Zeng, S., Chen, M., Zhanga, Y., Li, Q. A new insight into the rechargeable mechanism of manganese dioxide based symmetric supercapacitors. RSC Adv. 2017, 7, 8561. https://doi.org/10.1039/C6RA28040D.Search in Google Scholar
29. Fan, Q., Ma, C., Wu, L., Wei, C., Wang, H., Song, Y., Shi, J. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode. RSC Adv. 2019, 9, 6419. https://doi.org/10.1039/C8RA07587E.Search in Google Scholar
30. Reddy, B. J., Vickraman, P., Justin, A. S. Synthesis and characterization of graphene/binary metal molybdate (graphene/Zn1−xNixMoO4) nanocomposite for supercapacitors. Phys. Status Solidi A 2019, 216, 1800595. https://doi.org/10.1002/pssa.201800595.Search in Google Scholar
31. Sarkar, A., Gopal Khan, G. Synthesis of BiFeO3 nanoparticle anchored TiO2-BiFeO3 nano-heterostructure and exploring its different electrochemical aspects as electrode. Mater. Today Proc. 2018, 5, 10177. https://doi.org/10.1016/j.matpr.2017.11.016.Search in Google Scholar
32. Arul Raja, T., Vickraman, P., Simon Justin, A., Joji Reddy, B. Microwave synthesis of zinc ammonium phosphate/reduced graphene oxide hybrid composite for high energy density supercapacitors. Phys. Status Solidi A 2020, 217, 1900736. https://doi.org/10.1002/pssa.201900736.Search in Google Scholar
33. Badawy, W. A., El-Rabiei, M. M., Helal, N. H., Nady, H. M. Electrochemical behavior and stability of Cu-Al-Ni alloys in NaOH solutions. Z. Phys. Chem. 2013, 227, 1143. https://doi.org/10.1524/zpch.2012.0347.Search in Google Scholar
34. Xie, J., Yang, P., Wang, Y., Qi, T., Lei, Y., Li, C. M. Puzzles and confusions in supercapacitor and battery: theory and solutions. J. Power Sources 2018, 401, 213. https://doi.org/10.1016/j.jpowsour.2018.08.090.Search in Google Scholar
35. Tariq, M. Electrochemistry of Br−/Br2 redox couple in acetonitrile, methanol and mix media of acetonitrile–methanol: an insight into redox behavior of bromide on platinum (Pt) and gold (Au) electrode. Z. Phys. Chem. 2019, 234, 295. https://doi.org/10.1515/zpch-2018-1321.Search in Google Scholar
36. Mei, B. A., Munteshari, O., Lau, J., Dunn, B., Pilon, L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys.Chem. C 2018, 122, 194. https://doi.org/10.1021/acs.jpcc.7b10582.Search in Google Scholar
37. https://partners.metrohm.com/GetDocumentPublic?action=get_dms_document&docid=2043973.Search in Google Scholar
38. Choi, W., Shin, H. C., Kim, J. M., Choi, J. Y., Yoon, W. S. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol. 2020, 11, 1. https://doi.org/10.33961/jecst.2019.00528.Search in Google Scholar
39. Randviir, E. P., Banks, C. E. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 2013, 5, 1098. https://doi.org/10.1039/c3ay26476a.Search in Google Scholar
40. Kumar, A., Kumar, N., Sharma, Y., Leu, J., Tseng, T. Y. Synthesis of free-standing flexible rGO/MWCNT Films for symmetric supercapacitor application. Nanoscale Res. Lett. 2019, 14, 266. https://doi.org/10.1186/s11671-019-3100-1.Search in Google Scholar PubMed PubMed Central
41. Ismail, M. M., Hong, Z. Y., Arivanandhan, M., Yang, T. C. K., Pan, G. T., Huang, C. M. In situ binder-free and hydrothermal growth of nano structured NiCo2S4/Ni electrodes for solid-state hybrid supercapacitors. Energies 2021, 14, 7114. https://doi.org/10.3390/en14217114.Search in Google Scholar
42. Isacfranklin, M., Rathinam, Y., Ganesan, R., Velauthapillai, D. Direct growth of binder-free CNTs on a nickel foam substrate for highly efficient symmetric supercapacitors. ACS Omega 2023, 8, 11700. https://doi.org/10.1021/acsomega.2c04998.Search in Google Scholar PubMed PubMed Central
43. Abraham, A. M., Lonkar, S. P., Pillai, V. V., Alhassan, S. M. Three-dimensional MoS2 nanodot-impregnated nickel foam electrodes for high-performance supercapacitor applications. ACS Omega 2020, 5, 11721. https://doi.org/10.1021/acsomega.0c01045.Search in Google Scholar PubMed PubMed Central
44. Swaminathan, K., Kuppusamy, R., Govindaraju, V., Thirugnanam, T., Dinesh, A., Ponnusamy, S., Iqbal, M., Ayyar, M. Effect of reducing agents on structural, morphological, optical and electrochemical properties of Mn2O3 nanoparticles by co-precipitation method. Z. Phys. Chem. 2024, 238, 239–260. https://doi.org/10.1515/zpch-2023-0391.Search in Google Scholar
45. Sivaprakash, P., Kumar, K. A., Muthukumaran, S., Pandurangan, A., Dixit, A., Arumugam, S. NiF2 as an efficient electrode material with high window potential of 1.8 V for high energy and power density asymmetric supercapacitor. J. Electroanal. Chem. 2020, 873, 114379. https://doi.org/10.1016/j.jelechem.2020.114379.Search in Google Scholar
46. Tahenti, M., Issaoui, N., Roisnel, T., Kazachenko, A. S., Iramain, M. A., Brandan, S. A., Al-Dossary, O., Kazachenko, A. S., Marouan, H. Highlighting non-covalent interactions to molecular structure, electronic and vibrational spectra in a new hybrid organic-inorganic cobalt complex: synthesis, experimental and computational study. Z. Phys. Chem. 2023, 237, 1775. https://doi.org/10.1515/zpch-2023-0332.Search in Google Scholar
47. Slimani, Y., Meena, S. S., Shirsath, S. E., Hannachi, E., Almessiere, M. A., Baykal, A., Sivakumar, R., Khlid, M., Batoo, Thakur, A., Ercan, I., Özçelik, B. Impact of magnetic spinel ferrite content on the structure, morphology, optical, and magneto-dielectric properties of BaTiO3 materials. Z. Phys. Chem. 2023, 237, 1753. https://doi.org/10.1515/zpch-2023-0215.Search in Google Scholar
48. Halimah, M. K., Faznny, M. F., Azlan, M. N., Sidek, H. A. A. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results. Phys. 2017, 7, 581. https://doi.org/10.1016/j.rinp.2017.01.014.Search in Google Scholar
49. Saudi, H., Adel, G. Physical and optical properties of CeO2 BaO B2O3 glasses. Optics 2017, 6, 17; https://doi.org/10.11648/j.optics.20170602.11.Search in Google Scholar
50. Zaldo, C. Lanthanide-based luminescent thermosensors: from bulk to nanoscale. Adv. Nanomater. 2018, 10, 335. https://doi.org/10.1016/B978-0-12-813840-3.00010-7.Search in Google Scholar
51. Khamlich, S., Abdullaeva, Z., Kennedy, J. V., Maaza, M. High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 2017, 405, 329. https://doi.org/10.1016/j.apsusc.2017.02.095.Search in Google Scholar
52. Nazir, A., Khalid, F., Rehman, S., Sarwar, M., Iqbal, M., Yaseen, M., Khan, M. I., Abbas, M. Structural, electric and dielectric properties of perovskite based nanoparticles for energy applications. Z. Phys. Chem. 2021, 235, 769. https://doi.org/10.1515/zpc-2019-1558.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)