Home Physical Sciences Investigation of the composition and morphology of raw materials from the Aral Sea region
Article
Licensed
Unlicensed Requires Authentication

Investigation of the composition and morphology of raw materials from the Aral Sea region

  • Davron Kurbanov EMAIL logo , Savithri Mylsamy , Biao Zhou , Zabibulla Babayev , Rustam Bazarbayev , Atabek Allaniyazov , Subramanian Balakumar , Guanggen Zeng , Komiljon Yakubov and Smagul Karazhanov
Published/Copyright: February 28, 2024

Abstract

Clay and clay-based minerals have attracted research attention because of their unique properties and a vast range of applications in industry. In order to assess the potential applications, four different processed local kaolin-based raw minerals were collected from the Aral Sea region of Uzbekistan, and the total mineralogical properties have been explored. The results reveal that the structural, vibrational and electronic properties of metakaolinites only slightly differ from those of kaoline. The presence of corundum, quartz and kaolinite structural phase in minerals was determined by XRD analysis. FTIR and Raman studies expose the primary peaks which are associated with the functional groups of Al–OH, Al–O and Si–O in higher-frequency stretching and lower-frequency bending modes. The elemental and chemical compositional (XRF and XPS) analysis demonstrates the presence of major elements (Al, Si, Na, Fe, Ti) in the raw mineral and other metal contaminations (Mg, Ca, S, Cr, Zr). The SEM analysis demonstrates the morphological nature of kaolin-based raw minerals that can be exploited for industrial purposes.


Corresponding author: Davron Kurbanov, Department of Physics, Urgench State University, 220100 Urgench, Uzbekistan, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Davron Kurbanov (Corresponding author) – responsible for full content, approved presentation. Theoretical analysis of experimental results. Savithri Mylsamy – obtaining results from Raman spectrometer. SEM analysis assistant. Biao Zhou – obtaining results from FT-IR, XRF spectroscopic devices. Zabibulla Babayev – determination of mineral extraction areas. Rustam Bazarbayev – discussion of results and drawing graphs. Atabek Allaniyazov – assistant in the study of minerals. Subramanian Balakumar – performing XPS and SEM analysis. Guanggen Zeng – perform XRD analysis. Komiljon Yakubov-discussion of results. Smagul Karazhanov – manuscript preparation, coordination.

  3. Competing interests: The author states no conflict of interest.

  4. Research funding: Authors gratefully acknowledge DST – INT/UZBEK/P-12, India, for financial support to successfully carry out the research work.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Al Ani, T., Sarapaa, O. Clay and Clay Mineralogy; Geological Survey of Finland: Espoo, 2008. Report M19/3232/2008/41.Search in Google Scholar

2. Kumari, N., Mohan, C. Basics of clay minerals and their characteristic properties. In Clay and Clay Minerals; Nascimento, G., Ed. IntechOpen: London, 2021.10.5772/intechopen.97672Search in Google Scholar

3. Varga, G. The structure of kaolinite and meta kaolinite. Epitoanyag 2007, 59, 4–8; https://doi.org/10.14382/epitoanyag-jsbcm.2007.2.Search in Google Scholar

4. Prasad, M. S., Reid, K. J., Murray, H. H. Kaolin: processing, properties and applications. Appl. Clay Sci. 1991, 6, 87–119; https://doi.org/10.1016/0169-1317(91)90001-p.Search in Google Scholar

5. Khatib, J. M., Baalbaki, O., ElKordi, A. A. 15 – metakaolin. In Woodhead Publishing Series in Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete; Siddique, R., Cachim, P., Eds. Woodhead Publishing, 2018; pp. 493–511.10.1016/B978-0-08-102156-9.00015-8Search in Google Scholar

6. Cao, R., Zheng, F., Jin, M., Shang, Y. Study on the activity of metakaolin produced by traditional rotary kiln in China. Minerals 2022, 12, 365. https://doi.org/10.3390/min1203036.Search in Google Scholar

7. Laarabi, B., Safsafi, F., Daoudi, F., Dahlioui, D., El Baqqal, Y., Barhdadi, A. Chemical analysis of soiling of photovoltaic modules in different Moroccan areas. Appl. Sol. Energy 2021, 57, 120–127. https://doi.org/10.3103/S0003701X21020055.Search in Google Scholar

8. Ilse, K. K., Figgis, B. W., Naumann, V., Hagendorf, C., Bagdahn, J. Fundamentals of soiling processes on photovoltaic modules. Renew. Sust. Energ. Rev. 2018, 98, 239–254; https://doi.org/10.1016/j.rser.2018.09.015.Search in Google Scholar

9. Ershad-Langroudi, A., Fadaei, H., Ahmadi, K. Application of polymer coatings and nanoparticles in consolidation and hydrophobic treatment of stone monuments. Iran Polym. J. 2019, 28, 1–19. https://doi.org/10.1007/s13726-018-0673-y.Search in Google Scholar

10. Zhou, C., Wang, Q., Cheng, H. Recent advances in kaolinite-based material for photocatalysts. Chin. Chem. Lett. 2021, 32, 2617–2628; https://doi.org/10.1016/j.cclet.2021.01.009.Search in Google Scholar

11. Khayyat, M., Samadzadeh, A. Application of kaolin on different chemical and physical properties of pomegranate. J. Plant Nutr. 2022, 46, 1391–1399; https://doi.org/10.1080/01904167.2022.2067046.Search in Google Scholar

12. Martsouka, F., Papagiannopoulos, K., Hatziantoniou, S., Martin, B., Lagiopoulos, G., Tekerlekopoulou, A. G., Papoulis, D. Evaluation of the antimicrobial protection of pharmaceutical kaolin and talc modified with copper and zinc. Materials 2021, 14, 1173. https://doi.org/10.3390/ma14051173.Search in Google Scholar PubMed PubMed Central

13. Hamdy, A. E., Abdel-Aziz, H. F., El-khamissi, H., AlJwaizea, N. I., El-Yazied, A. A., Selim, S., Tawfik, M. M., AlHarbi, K., Mohamed Ali, S. M., Elkelish, A. Kaolin improves photosynthetic pigments, and antioxidant content, and decreases sunburn of mangoes: field study. Agronomy 2022, 12, 1535. https://doi.org/10.3390/agronomy12071535.Search in Google Scholar

14. Qu, M., Ma, X., Hou, L., Yuan, M., Jiao, H., Xue, M., Liu, X., He, J. Fabrication of durable superamphiphobic materials on various substrates with wear-resistance and self-cleaning performance from kaolin. Appl. Surf. Sci. 2018, 456, 737–750; https://doi.org/10.1016/j.apsusc.2018.06.194.Search in Google Scholar

15. Jovanov, V., Zečević, V., Vulić, T., Ranogajec, J., Fidanchevska, E. Preparation and characterization of protective self-cleaning TiO2/kaolin composite coating. Mater. Constr. 2018, 68, e163. https://doi.org/10.3989/mc.2018.08517.Search in Google Scholar

16. Zhang, A., Mu, B., Hui, A., Wang, A. A facile approach to fabricate bright blue heat-resisting paint with self-cleaning ability based on CoAl2O4/kaolin hybrid pigment. Appl. Clay Sci. 2018, 160, 153–161; https://doi.org/10.1016/j.clay.2017.12.004.Search in Google Scholar

17. Alamri, H. R., Rezk, H., Abd-Elbary, H., Ziedan, H. A., Ahmed, E. Experimental investigation to improve the energy efficiency of solar PV panels using hydrophobic SiO2 nanomaterial. Coatings 2020, 10, 503. https://doi.org/10.3390/coatings10050503.Search in Google Scholar

18. Siahpoosh, S. M., Salahi, E., Hessari, F. A., Mobasherpour, I. Facile synthesis of γ-alumina nanoparticles via the sol-gel method in presence of various solvents. Sigma J. Eng. Nat. Sci. 2017, 35, 441–456.Search in Google Scholar

19. Zidi, Z., Ltifi, M., Ben Ayadi, Z., El Mir, L. Synthesis of nano-alumina and their effect on structure, mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 2019, 7, 524–535; https://doi.org/10.1080/21870764.2019.1676498.Search in Google Scholar

20. Salahudeen, N., Ahmed, A. S., Al-Muhtaseb, A., Dauda, M., Waziri, S., Jibril, B. Synthesis and characterization of micro-sized silica from Kankara kaolin. J. Eng. Res. 2015, 19, 27–32.Search in Google Scholar

21. Behnamfard, A., Chegni, K., Alaei, R., Veglio, F. The effect of thermal and acid treatment of kaolin on its ability for cyanide removal from aqueous solutions. Environ. Earth Sci. 2019, 78, 408. https://doi.org/10.1007/s12665-019-8408-8.Search in Google Scholar

22. Obada, D. O., Dodoo-Arhin, D., Dauda, M., Anafi, F. O., Ahmed, A. S., Ajayi, O. A. The impact of kaolin dehydroxylation on the porosity and mechanical integrity of kaolin-based ceramics using different pore formers. Results Phys. 2017, 7, 2718–2727; https://doi.org/10.1016/j.rinp.2017.07.048.Search in Google Scholar

23. Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Mohammed, A. K., Shuaib, D. T. Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon 2019, 5, 1–17; https://doi.org/10.1016/j.heliyon.2019.e02923.Search in Google Scholar PubMed PubMed Central

24. Mitrović, A., Zdujić, M. Preparation of pozzolanic addition by mechanical treatment of kaolin clay. Int. J. Miner. Process. 2014, 132, 59–66; https://doi.org/10.1016/j.minpro.2014.09.004.Search in Google Scholar

25. Wang, S., Li, X., Wang, S., Li, Y., Zhai, Y. Synthesis of γ-alumina via precipitation in ethanol. Mater. Lett. 2008, 62, 20; https://doi.org/10.1016/j.matlet.2008.03.048.Search in Google Scholar

26. Ali, A. S., Mohammed, A. J., Saud, H. Hydrothermal synthesis of TiO2/Al2O3 nanocomposite and its application as improved sonocatalyst. Int. J. Eng. Technol. 2018, 7, 22–25; https://doi.org/10.14419/ijet.v7i4.37.23607.Search in Google Scholar

27. Farahmandjou, M., Khodadadi, A., Yaghoubi, M. Low concentration iron-doped alumina (Fe/Al2O3) nanoparticles using co-precipitation method. J. Supercond. Nov. Magn. 2020, 33, 3425–3432; https://doi.org/10.1007/s10948-020-05569-0.Search in Google Scholar

28. Gao, L., Zheng, Y., Tang, Y., Yu, J., Yu, X., Liu, B. Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers. Heliyon 2020, 6, 1–5; https://doi.org/10.1016/j.heliyon.2020.e03853.Search in Google Scholar PubMed PubMed Central

29. Aboudi, S., Hanafiah, M. M., Chowdhury, A. J. K. Environmental characteristics of clay and clay-based minerals. Geol. Ecol. Landsc. 2017, 1, 155–161; https://doi.org/10.1080/24749508.2017.1361128.Search in Google Scholar

30. Tironi, A., Trezza, M. A., Irassar, E. F., Scian, A. N. Thermal treatment of kaolin: effect on the pozzolanic activity. Procedia Mater. Sci. 2012, 1, 343–350; https://doi.org/10.1016/j.mspro.2012.06.046.Search in Google Scholar

31. Adeniyi, F. I., Ogundiran, M. B., Hemalatha, T., Hanumantrai, B. B. Characterization of raw and thermally treated nigerian kaolinite-containing clays using instrumental techniques. SN Appl. Sci. 2020, 2, 821. https://doi.org/10.1007/s42452-020-2610-x.Search in Google Scholar

32. Reyes, C. A. R., Williams, C., Alarcón, O. M. C. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions. Mater. Res. 2013, 16, 424–438; https://doi.org/10.1590/S1516-14392013005000010.Search in Google Scholar

33. Hadi, A. A., Malek, N. A. N. N., Williams, C. D. Structural characterization and antibacterial activity of antibiotic streptomycin immobilized on zeolite synthesized from natural kaolinite. Biointerface Res. Appl. Chem. 2021, 11, 13573–13586; https://doi.org/10.33263/BRIAC115.1357313586.Search in Google Scholar

34. Saikia, B., Parthasarathy, G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 2010, 1, 206; https://doi.org/10.4236/jmp.2010.14031.Search in Google Scholar

35. Nagabhushana, K. R., Lakshminarasappa, B., Singh, F. Photoluminescence and raman studies in swift heavy ion irradiated polycrystalline aluminium oxide. Bull. Mater. Sci. 2009, 32, 515–519; https://doi.org/10.1007/s12034-009-0076-y.Search in Google Scholar

36. Gangwar, J., Gupta, B. K., Tripathi, S. K., Srivastava, A. K. Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. Nanoscale 2015, 7, 13313–13344; https://doi.org/10.1039/c5nr02369f.Search in Google Scholar PubMed

37. Cava, S., Tebcherani, S. M., Souza, I. A., Pianaro, S. A., Paskocimas, C. A., Longo, E., Varela, J. A. Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater. Chem. Phys. 2007, 103, 394–399; https://doi.org/10.1016/j.matchemphys.2007.02.046.Search in Google Scholar

38. Frost, R. L. The structure of the kaolinite minerals – a FT-Raman study. Clay Miner. 1997, 32, 65–77; https://doi.org/10.1180/claymin.1997.032.1.08.Search in Google Scholar

39. Johansson, U., Frost, R. L., Forsling, W., Kloprogge, J. T. Raman spectroscopy of the kaolinite hydroxyls at 77 K. Appl. Spectrosc. 1998, 52, 1277–1282; https://doi.org/10.1366/0003702981942780.Search in Google Scholar

40. Johnston, C. T., Sposito, G., Birge, R. R. Raman spectroscopic study of kaolinite in aqueous suspension. Clays Clay Miner. 1985, 33, 483–489. https://doi.org/10.1346/CCMN.1985.0330602.Search in Google Scholar

41. Samyn, P., Schoukens, G., Stanssens, D. Kaolinite nanocomposite platelets synthesized by intercalation and imidization of poly(styrene-co-maleic anhydride). Materials 2015, 8, 4363–4388; https://doi.org/10.3390/ma8074363.Search in Google Scholar PubMed PubMed Central

42. Frost, R., Tran, T., Kristof, J. The structure of an intercalated ordered kaolinite – a Raman microscopy study. Clay Miner. 1997, 32, 587–596; https://doi.org/10.1180/claymin.1997.032.4.09.Search in Google Scholar

43. Ivanović, M., Nenadović, S., Pavlović, V. P., Radovic, I., Kijevcanin, M., Pavlovic, V., Kljajević, L. The influence of thermodynamic parameters on alkaline activator of geopolymers and structure of geopolymers. Maced. J. Chem. Chem. Eng. 2021, 40, 99; https://doi.org/10.20450/mjcce.2021.2127.Search in Google Scholar

44. Kumar, A., Lingfa, P. Sodium bentonite and kaolin clays: comparative study on their FT-IR, XRF, and XRD. Mater. Today: Proc. 2020, 22, 737–742. https://doi.org/10.1016/j.matpr.2019.10.037.Search in Google Scholar

45. Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Czech, K., Banaś, D., Kubala-Kukuś, A., Stabrawa, I. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. J. Mol. Struct. 2015, 1084, 16–22; https://doi.org/10.1016/j.molstruc.2014.12.008.Search in Google Scholar

46. Dewi, R., Agusnar, H., Alfian, Z., Tamrin Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. J. Phys.: Conf. Ser. 2018, 1116, 042010; https://doi.org/10.1088/1742-6596/1116/4/042010.Search in Google Scholar

47. El Alouani, M., Alehyen, S., El Achouri, M., Taibi, M. Preparation, characterization, and application of metakaolin-based geopolymer for removal of methylene blue from aqueous solution. J. Chem. 2019, 2019, 1–14; https://doi.org/10.1155/2019/4212901.Search in Google Scholar

48. El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I., Khalili, F. Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int. J. Miner. Process. 2015, 137, 34–42; https://doi.org/10.1016/j.minpro.2015.03.002.Search in Google Scholar

49. Sudagar, A. J., Andrejkovičová, S., Rocha, F., Patinha, C., Soares, M. R., Velosa, A. L., Silva, E. F. d. Combined influence of low-grade metakaolins and natural zeolite on compressive strength and heavy metal adsorption of geopolymers. Minerals 2021, 11, 486. https://doi.org/10.3390/min11050486.Search in Google Scholar

50. Higley, D. K., Pantea, M. P., Slatt, R. M. 3-D Reservoir Characterization of the House Creek Oil Field, Powder River Basin. USGS Publications Warehouse: Wyoming, 1997. Available from: http://pubs.er.usgs.gov/publication/ds33.10.3133/ds33Search in Google Scholar

51. Alshameri, A., Rong, L. Characterization and evaluation of alga of kaolin deposits of Yemen for industrial application. Am. J. Eng. Appl. Sci. 2009, 2, 292–296; https://doi.org/10.3844/ajeassp.2009.292.296.Search in Google Scholar

52. Erasmus, E. The influence of thermal treatment on properties of kaolin. Hem. Ind. 2015, 70, 66; https://doi.org/10.2298/HEMIND150720066E.Search in Google Scholar

53. Kloprogge, J. T., Ponce, C. P., Ortillo, D. O. X-ray photoelectron spectroscopic study of some organic and inorganic modified clay minerals. Materials 2021, 14, 7115. https://doi.org/10.3390/ma14237115.Search in Google Scholar PubMed PubMed Central

54. Jbara, A. S., Othaman, Z., Saeed, M. A. Structural, morphological and optical investigations of θ-Al2O3 ultrafine powder. J. Alloys Compd. 2017, 718, 1–6; https://doi.org/10.1016/j.jallcom.2017.05.085.Search in Google Scholar

55. Zhang, N., Ejtemaei, M., Nguyen, A. V., Zhou, C. XPS analysis of the surface chemistry of sulfuric acid-treated kaolinite and diaspore minerals with flotation reagents. Miner. Eng. 2019, 136, 1–7; https://doi.org/10.1016/j.mineng.2019.03.002.Search in Google Scholar

56. Zhang, Y., Fu, L., Shu, Z., Yang, H., Tang, A., Jiang, T. Substitutional doping for aluminosilicate mineral and superior water splitting performance. Nanoscale Res. Lett. 2017, 12, 456. https://doi.org/10.1186/s11671-017-2192-8.Search in Google Scholar PubMed PubMed Central

57. Song, T., Qi, L., Liu, J., Yang, W., Chen, R., Jing, X., Takahashi, K., Wang, J. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property. Appl. Surf. Sci. 2015, 355, 495–501; https://doi.org/10.1016/j.apsusc.2015.07.140.Search in Google Scholar

58. Xi, P., Ma, R., Liu, W. Study on the crystal structure of coal kaolinite and non-coal kaolinite: insights from experiments and DFT simulations. Symmetry 2020, 12, 1125; https://doi.org/10.3390/sym12071125.Search in Google Scholar

59. Provis, J. L., Yong, S. L., van Deventer, J. S. J. Characterising the reaction of metakaolin in an alkaline environment by XPS, and time- and spatially-resolved FTIR spectroscopy. In Calcined Clays for Sustainable Concrete. RILEM Bookseries; Scrivener, K., Favier, A., Eds. Springer: Dordrecht, Vol. 10, 2015.10.1007/978-94-017-9939-3_37Search in Google Scholar

60. Barr, T. L., Seal, S., He, H., Klinowski, J. X-ray photoelectron spectroscopic studies of kaolinite and montmorillonite. Vacuum 1995, 46, 1391–1395; https://doi.org/10.1016/0042-207x(95)00159-x.Search in Google Scholar

61. Lan, T., Li, P., Rehman, F. U., Li, X., Yang, W., Guo, S. Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers. Environ. Sci. Pollut. Res. 2019, 26, 33555–33567. https://doi.org/10.1007/s11356-019-06362-w.Search in Google Scholar PubMed

62. Burridge, K., Johnston, J., Borrmann, T. Silver nanoparticle–clay composites. J. Mater. Chem. 2011, 21, 734. https://doi.org/10.1039/C0JM02702B.Search in Google Scholar

63. Zhang, Q., Wang, J., Zhang, Y., Chen, J. Natural kaolinite-based hierarchical porous microspheres as effective and highly recyclable adsorbent for removal of cationic dyes. Environ. Sci. Pollut. Res. 2022, 29, 72001–72016; https://doi.org/10.1007/s11356-022-20986-5.Search in Google Scholar PubMed

64. Post, P., Wurlitzer, L., Maus-Friedrichs, W., Weber, A. P. Characterization and applications of nanoparticles modified in-flight with silica or silica-organic coatings. Nanomaterials 2018, 8, 530; https://doi.org/10.3390/nano8070530.Search in Google Scholar PubMed PubMed Central

65. Fang, R. C., Sun, Q. Q., Zhou, P., Yang, W., Wang, P. F., Zhang, D. W. High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition. Nanoscale Res. Lett. 2013, 8, 92. https://doi.org/10.1186/1556-276X-8-92.Search in Google Scholar PubMed PubMed Central

66. Djebaili, K., Mekhalif, Z., Boumaza, A., Djelloul, A. XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy. J. Spectrosc. 2015, 2015, 1–16; https://doi.org/10.1155/2015/868109.Search in Google Scholar

67. Kumar, N., Biswas, K. Cryomilling: an environment friendly approach of preparation large quantity ultra-refined pure aluminium nanoparticles. J. Mater. Res. Technol. 2017, 8, 63–74; https://doi.org/10.1016/j.jmrt.2017.05.017.Search in Google Scholar

68. Yang, S., Liu, L., Jia, Z. X., Fu, W. W., Jia, D. M., Luo, Y. F. Study on the structure-properties relationship of natural rubber/SiO2 composites modified by a novel multi-functional rubber agent. eXPRESS Polym. Lett. 2014, 8, 425–435; https://doi.org/10.3144/expresspolymlett.2014.46.Search in Google Scholar

69. Tang, C., Zhu, J., Zhou, Q., Wei, J., Zhu, R., He, H. Surface heterogeneity of SiO2 polymorphs: an XPS investigation of α-quartz and α-cristobalite. J. Phys. Chem. C 2014, 118, 26249–26257; https://doi.org/10.1021/jp509338xs.Search in Google Scholar

70. Sihvonen, S. K., Murphy, K. A., Washton, N. M., Altaf, M. B., Mueller, K. T., Freedman, M. A. Effect of acid on surface hydroxyl groups on kaolinite and montmorillonite. Z. Phys. Chem. 2018, 232, 409–430. https://doi.org/10.1515/zpch-2016-0958.Search in Google Scholar

Received: 2023-11-02
Accepted: 2024-01-18
Published Online: 2024-02-28
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0401/html?lang=en
Scroll to top button