Bi2O3/ZnO heterostructured semiconductor nanocomposites: synthesis, characterization and its visible light-induced degradation of methylene blue dye
-
Velanganni Simeyon
, Boominathan Catherin Meena
, AbuZar Ansarie
Abstract
In this study, we describe the creation of linked semiconductor nanomaterials, which represents a significant development for photocatalytic applications. A Bi2O3–ZnO hetrostructured thin film was created using the SILAR-CBD deposition technique. In comparison to pure ZnO and Bi2O3, the produced heterostructured thin film showed greater photocatalytic (PCD) activity for the degradation of methylene blue (MB) dye under UV light. The formation of Bi2O3 (monoclinic lattice phase) and ZnO (hexagonal wurtzite phase) are the heterostructured nanomaterials that were generated, according to a powder XRD inspection. An image taken with HR-TEM demonstrates the mixing of nanoparticles and nanorod formations in the Bi2O3/ZnO. The vectorial movement of electrons (e−) and holes (h+) between ZnO and Bi2O3 is responsible for the boosted photocatalytic efficiency, which is in turn, accountable for the enhanced photocatalytic activities.
Acknowledgment
This work is funded by Researcher supporting project number (RSPD2023R680), King Saud University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Author contributions: Study conception and design: Velanganni simeyon, Ayyar Dinesh, Deivatamil Deivanayagam, Thiruneelakandan Raghavan; Acquisition of data: Catherin Meena Boominathan, Manikandan Mathavi, Govindaswamy Padmapriya, Manikandan Durka; Drafting of manuscript: Velanganni Simeyon, Ayyar Dinesh, Deivatamil Deivanayagam, Thiruneelakandan Raghavan; Critical revision: Manikandan Ayyar, AbuZar Ansarie, Mohamed Hashem, Hassan Fouad.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Noreen, S., Zafar, S., Bibi, I., Amami, M., Raza, M. A. S., Alshammari, F. H., Elqahtani, Z. M., Basha, B. I., Alwadai, N., Nazir, A., Khan, M. I., Iqbal, M. ZnO, Al/ZnO and W/Ag/ZnO nanocomposite and their comparative photocatalytic and adsorptive removal for turquoise blue dye. Ceram. Int. 2022, 48, 12170–12183; https://doi.org/10.1016/j.ceramint.2022.01.078.Suche in Google Scholar
2. Nazir, A., Raza, M., Abbas, M., Abbas, S., Ali, A., Ali, Z., Younas, U., Al-Mijalli, S. H., Iqbal, M. Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation. Z. Phys. Chem. 2022, 236, 1203–1217; https://doi.org/10.1515/zpch-2022-0024.Suche in Google Scholar
3. Bukhari, A., Atta, M., Nazir, A., Shahab, M. R., Kanwal, Q., Iqbal, M., Albalawi, H., Alwadai, N. Catalytic degradation of MO and MB dyes under solar and UV light irradiation using ZnO fabricated using Syzygium leaf extract. Z. Phys. Chem. 2022, 236, 659–671; https://doi.org/10.1515/zpch-2021-3096.Suche in Google Scholar
4. Bashir, M., Majid, F., Bibi, I., Mushtaq, J., Ali, A., Farhat, L. B., Katubi, K. M., Alwadai, N., Khan, M. I., Iqbal, M. Ultrasonic assisted synthesis of ZnO nanoflakes and photocatalytic activity evaluation for the degradation of methyl orange. Arabian J. Chem. 2022, 15, 104194; https://doi.org/10.1016/j.arabjc.2022.104194.Suche in Google Scholar
5. Mohsin, M., Bhatti, I. A., Ashar, A., Mahmood, A., ul Hassan, Q., Iqbal, M. Fe/ZnO@ ceramic fabrication for the enhanced photocatalytic performance under solar light irradiation for dye degradation. J. Mater. Res. Technol. 2020, 9, 4218–4229; https://doi.org/10.1016/j.jmrt.2020.02.048.Suche in Google Scholar
6. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. ZnO/UV/H2O2 based advanced oxidation of disperse red dye. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Suche in Google Scholar
7. Salem, N. M., Awwad, A. M. Green synthesis and characterization of ZnO nanoparticles using Solanum rantonnetii leaves aqueous extract and antifungal activity evaluation. Chem. Int. 2022, 8, 12–17.Suche in Google Scholar
8. AL-Dharob, M. H., Mouhamad, R. S., Al Khafaji, K. A., Al-Abodi, E. E. Antibacterial efficacy of cotton nanofiber soaked in Ag, ZnO and TiO2 nanoparticles. Chem. Int. 2022, 8, 58–67.Suche in Google Scholar
9. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem. Int. 2020, 6, 151–159.Suche in Google Scholar
10. Vinosha, P. A., Manikandan, A., Ceicilia, A. S. J., Dinesh, A., Nirmala, G. F., Preetha, A. C., Slimani, Y., Almessiere, M. A., Baykal, A., Xavier, B. Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Int. 2021, 47, 10512–10535; https://doi.org/10.1016/j.ceramint.2020.12.289.Suche in Google Scholar
11. Manikandan, A., Yogasundari, M., Dinesh, A., Thanrasu, K., Kanmani Raja, K., Slimani, Y., Srinivasan, R., Jaganathan, S. K., Baykal, A. Synthesis and characterizations of multifunctional magnetic-luminescent ZnO@Fe3O4 nanocomposites. Phys. E 2020, 124, 114291; https://doi.org/10.1016/j.physe.2020.114291.Suche in Google Scholar
12. Mohamed Racik, K., Manikandan, A., Mahendiran, M., Madhavan, J., Victor Antony Raj, M., Gulam Mohamed, M., Maiyalagan, T. Hydrothermal synthesis and characterization studies of α-Fe2O3/MnO2 nanocomposites for energy storage supercapacitor application. Ceram. Int. 2020, 46, 6222–6233; https://doi.org/10.1016/j.ceramint.2019.11.091.Suche in Google Scholar
13. Chai, S., Zhao, G., Li, P., Lei, Y., Zhang, Y. N., Li, D. Novel sieve-like SnO2/TiO2 nanotubes with integrated photoelectrocatalysis: fabrication and application for efficient toxicity elimination of nitrophenol wastewater. J. Phys. Chem. C 2011, 115, 18261–18269; https://doi.org/10.1021/jp205228h.Suche in Google Scholar
14. Cheng, H., Huang, B., Wang, P., Wang, Z., Lou, Z., Wang, J., Qin, X., Zhang, X., Dai, Y. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 2011, 47, 7054–7056; https://doi.org/10.1039/C1CC11525A.Suche in Google Scholar PubMed
15. Colón, G., López, S. M., Hidalgo, M. C., Navío, J. A. Sunlight highly photoactive Bi2WO6–TiO2 heterostructures for rhodamine B degradation. Chem. Commun. 2010, 46, 4809–4811; https://doi.org/10.1039/C0CC00058B.Suche in Google Scholar PubMed
16. Duan, F., Zheng, Y., Chen, M. Flowerlike PtCl4/Bi2WO6 composite photocatalyst with enhanced visible-light-induced photocatalytic activity. Appl. Surf. Sci. 2011, 257, 1972–1978; https://doi.org/10.1016/j.apsusc.2010.09.037.Suche in Google Scholar
17. Gao, X., Wang, Z., Fu, F., Li, X., Li, W. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities. Phys. B 2015, 474, 81–89; https://doi.org/10.1016/j.physb.2015.06.002.Suche in Google Scholar
18. Hameed, A., Montini, T., Gombac, V., Fornasiero, P. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4−x nanocomposite. J. Am. Chem. Soc. 2008, 130, 9658–9659; https://doi.org/10.1021/ja803603y.Suche in Google Scholar PubMed
19. Jiang, J., Zhang, X., Sun, P., Zhang, L. ZnO/BiO heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. C 2011, 115, 20555–20564; https://doi.org/10.1021/jp205925z.Suche in Google Scholar
20. Liu, W., Wang, M., Xu, C., Chen, S., Fu, X. Ag3PO4/ZnO: an efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B. Mater. Res. Bull. 2013, 48, 106–113; https://doi.org/10.1016/j.materresbull.2012.10.015.Suche in Google Scholar
21. Park, H. S., Lee, C. Y., Reisner, E. Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation. Phys. Chem. Chem. Phys. 2014, 16, 22462–22465; https://doi.org/10.1039/c4cp03883e.Suche in Google Scholar PubMed
22. Qu, Y., Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580; https://doi.org/10.1039/c2cs35355e.Suche in Google Scholar PubMed
23. Wang, C., Shao, C., Zhang, X., Liu, Y. SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg. Chem. 2009, 48, 7261–7268; https://doi.org/10.1021/ic9005983.Suche in Google Scholar PubMed
24. Wang, H., Li, S., Zhang, L., Chen, Z., Hu, J., Zou, R., Xu, K., Song, G., Zhao, H., Yang, J., Liu, J. Surface decoration of Bi2WO6 superstructures with Bi2O3 nanoparticles: an efficient method to improve visible-light-driven photocatalytic activity. CrystEngComm 2013, 15, 9011–9019; https://doi.org/10.1039/c3ce41447g.Suche in Google Scholar
25. Balachandran, S., Swaminathan, M. Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. J. Phys. Chem. C 2012, 116, 26306–26312; https://doi.org/10.1021/jp306874z.Suche in Google Scholar
26. Xu, Y., Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556; https://doi.org/10.2138/am-2000-0416.Suche in Google Scholar
27. Xu, Q. C., Wellia, D. V., Ng, Y. H., Amal, R., Tan, T. T. V. Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 2011, 115, 7419–7428; https://doi.org/10.1021/jp1090137.Suche in Google Scholar
28. Zhang, L. S., Wong, K. H., Yip, H. Y., Hu, C., Yu, J. C., Chan, C. Y., Wong, P. K. Effective photocatalytic disinfection of E. coli K-12 using AgBr−Ag−Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals. Environ. Sci. Technol. 2010, 44, 1392–1398; https://doi.org/10.1021/es903087w.Suche in Google Scholar PubMed
29. Zhang, Z., Wang, W., Wang, L., Sun, S. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. ACS Appl. Mater. Inter. 2012, 4, 593–597; https://doi.org/10.1021/am2017199.Suche in Google Scholar PubMed
30. Yiamsawas, D., Boonpavanitchakul, K., Kangwansupamonkon, W. Preparation of ZnO nanostructures by solvothermal method. J. Microsc. Soc. Thail. 2009, 23, 75–78.Suche in Google Scholar
31. Pugazhenthiran, N., Sathishkumar, P., Murugesan, S., Anandan, S. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3nanoparticles. Chem. Eng. J. 2011, 168, 1227–1233; https://doi.org/10.1016/j.cej.2011.02.020.Suche in Google Scholar
32. Zhong, J., Li, J., Wang, T., Zeng, J., Si, Y., Cheng, C., Li, M., Wang, P., Ding, J. Improved solar-driven photocatalytic performance of Ag3PO4/ZnO composites benefiting from enhanced charge separation with a typical Z-scheme mechanism. Appl. Phys. A 2016, 122, 1–6; https://doi.org/10.1007/s00339-015-9516-2.Suche in Google Scholar
33. Baviskar, P. K., Nikam, P. R., Gargote, S. S., Ennaoui, A., Sankapal, B. R. Controlled synthesis of ZnO nanostructures with assorted morphologies via simple solution chemistry. J. Alloys Compd. 2013, 551, 233–242; https://doi.org/10.1016/j.jallcom.2012.10.052.Suche in Google Scholar
34. Velanganni, S., Pravinraj, S., Immanuel, P., Thiruneelakandan, R. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue. Phys. B 2018, 534, 56–62; https://doi.org/10.1016/j.physb.2018.01.027.Suche in Google Scholar
35. Nikam, P. R., Baviskar, P. K., Sali, J. V., Gurav, K. V., Kim, J. H., Sankapal, B. R. CdS surface encapsulated ZnO nanorods: synthesis to solar cell application. J. Alloys Compd. 2016, 689, 394–400; https://doi.org/10.1016/j.jallcom.2016.07.295.Suche in Google Scholar
36. Mohamed Racik, K., Manikandan, A., Mahendiran, M., Prabakaran, P., Madhavan, J., Victor Antony Raj, M. Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices. Phys. E 2020, 119, 114033; https://doi.org/10.1016/j.physe.2020.114033.Suche in Google Scholar
37. Rathinavel, S., Deepika, R., Panda, D., Manikandan, A. Synthesis and characterization of MgFe2O4 and MgFe2O4/rGO nanocomposites for the photocatalytic degradation of methylene blue. Inorg. Nano-Metal Chem. 2021, 51, 210–217; https://doi.org/10.1080/24701556.2020.1771590.Suche in Google Scholar
38. Muthukrishnaraj, A., Kalaivani, S. S., Manikandan, A., Kavitha, H. P., Srinivasan, R., Balasubramanian, N. Sonochemical synthesis and visible light induced photocatalytic property of reduced graphene oxide@ZnO hexagonal hollow rod nanocomposite. J. Alloys Compd. 2020, 83625, 155377; https://doi.org/10.1016/j.jallcom.2020.155377.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Bi2O3/ZnO heterostructured semiconductor nanocomposites: synthesis, characterization and its visible light-induced degradation of methylene blue dye
- Hydrothermal synthesis of Cu2CoSnS4 nanoparticles: characterization and their applications of electrochemical, antibacterial and photocatalytic performances
- Synthesis structural optical and mechanical properties of Nb3⁺ doped Zinc Borophosphate glass for radiation shielding application
- Oil mediated polymer based green synthesis of calcium hydroxide nanoparticles and their application in bone conservation
- Synthesis, molecular modeling, quantum chemical calculations and in silico drug profiling of the novel (4-phenylpiperazin-1-ium) hydrogenfumarate as a tyrosinase inhibitor
- Examining the design characteristics of a dual-material gate all-around tunnel FET for use in biosensing applications
- Investigation of structural, optical and thermodynamic properties of FrBO3 (B = Ta, Nb) perovskites: first principles calculations
- Temporal and thermal dynamics exploration of different detergents’ formulations components on fungal alkaliphilic lipases stability
- Role of sodium alginate on the modification of the interfacial, micellization and thermodynamic properties of two imidazolium-based surface active ionic liquids in water
- Organic and inorganic pollutants removal from tannery effluent using electrocoagulation technique
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Bi2O3/ZnO heterostructured semiconductor nanocomposites: synthesis, characterization and its visible light-induced degradation of methylene blue dye
- Hydrothermal synthesis of Cu2CoSnS4 nanoparticles: characterization and their applications of electrochemical, antibacterial and photocatalytic performances
- Synthesis structural optical and mechanical properties of Nb3⁺ doped Zinc Borophosphate glass for radiation shielding application
- Oil mediated polymer based green synthesis of calcium hydroxide nanoparticles and their application in bone conservation
- Synthesis, molecular modeling, quantum chemical calculations and in silico drug profiling of the novel (4-phenylpiperazin-1-ium) hydrogenfumarate as a tyrosinase inhibitor
- Examining the design characteristics of a dual-material gate all-around tunnel FET for use in biosensing applications
- Investigation of structural, optical and thermodynamic properties of FrBO3 (B = Ta, Nb) perovskites: first principles calculations
- Temporal and thermal dynamics exploration of different detergents’ formulations components on fungal alkaliphilic lipases stability
- Role of sodium alginate on the modification of the interfacial, micellization and thermodynamic properties of two imidazolium-based surface active ionic liquids in water
- Organic and inorganic pollutants removal from tannery effluent using electrocoagulation technique