Hydrothermal synthesis of Cu2CoSnS4 nanoparticles: characterization and their applications of electrochemical, antibacterial and photocatalytic performances
-
Selvam Manjula
, Panneerselvam Dhamodharan
Abstract
A hydrothermal technique was used to successfully synthesize tetragonal Cu2CoSnS4 (CCTS) nanoparticles and investigate the effect of various thiourea concentrations on structural, morphological and optical properties. XRD analysis revealed the formation of tetragonal CCTS nanoparticles and the average crystallite size (nm) varied from 26 to 40 nm. The Raman studies confirmed the vibrational modes of the CCTS nanoparticles. The FE-SEM images revealed that the thiourea concentrations induced morphological changes in the CCTS nanoparticles, which exhibited the nanosheets changing into spherical structures. TEM images indicated that the CCTS sample had a spherical structure and the SAED pattern demonstrated a polycrystalline nature. The valance states of metallic species, such as Cu+ and Co2+ were further confirmed by XPS. The optical band gap (1.53 eV) was calculated from UV–Visible data and the obtained bandgap value from the literature. The electrochemical measurements of the CCTS TU-10 electrode exhibited pseudocapacitive behavior with a notable specific capacitance of 198 Fg−1 at a scan rate of 10 mV/S along with favorable electrocatalytic activity. In the photocatalytic application, when compared to MB dye (78 %), the CCTS catalyst was found to have a higher degradation efficiency toward CV dye (84 %). For antibacterial studies, the Vibrio parahaemolyticus bacteria exhibited the maximum zone of inhibition at 20 mm for 100 μg/ml. Finally, the experimental results suggested that the synthesized CCTS nanoparticles had better electrochemical, photocatalytic, and antibacterial properties.
Acknowledgments
The corresponding author wishes to thank the Head of the Department of Physics and Centralized Instrumentation and Service Laboratory (CISL), Annamalai University, Annamalai Nagar, Tamil Nādu, India, for providing the CV and analytical instrument facilities.
-
Research ethics: Not applicable.
-
Author contributions: S. Manjula, G. Sivakumar, P. Dhamodharan - Conceptualization, Methodology, Validation, Formal analysis, Writing Original Draft, Writing- Review, Visualization; S. Manjula, G. Sivakumar, P. Dhamodharan - Investigation, Supervision, Project administration, Writing- Editing; S. Manjula, G. Sivakumar, P. Dhamodharan - Resources, Project administration, Writing- Editing; A. Dinesh, Saravana Kumar Jaganathan, Manikandan Ayyar - Conceptualization, Software, Resources, Investigation, Writing- Editing.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Wang, R., Xu, C., Lee, J.-M. Nano Energy 2016, 19, 210–221. https://doi.org/10.1016/j.nanoen.2015.10.030.Search in Google Scholar
2. Vigneshwaran, P., Kandiban, M., Senthil Kumar, N., Venkatachalam, V., Jayavel, R., Vetha Potheher, I. J. Mater. Sci.: Mater. Electron. 2016, 27, 4653–4658; https://doi.org/10.1007/s10854-016-4343-6.Search in Google Scholar
3. Wang, C., Liu, J., Huang, H. Electrochim. Acta 2015, 182, 47–60; https://doi.org/10.1016/j.electacta.2015.08.158.Search in Google Scholar
4. Vijayakumar, S., Ponnalagi, A. K., Nagamuthu, S., Muralidharan, G. Electrochim. Acta 2013, 106, 500–505. https://doi.org/10.1016/j.electacta.2013.05.121.Search in Google Scholar
5. Rajavedhanayagam, J., Murugadoss, V., Maurya, D. K., Angaiah, S. ES Energy Environ. 2022, 18, 65–74; https://doi.org/10.30919/esee8c753.Search in Google Scholar
6. Ahmed, M. A., Bakr, N. A., Kamil, A. A. Chalcogenide Lett. 2019, 16, 231–239.Search in Google Scholar
7. Al-Zahrani, H. Y. S. J. Mater. Sci.: Mater. Electron. 2020, 31, 6900–6909. https://doi.org/10.1007/s10854-020-03252-7.Search in Google Scholar
8. Zhang, X., Bao, N., Ramasamy, K., Wang, Y.-H. A., Wang, Y., Lin, B., Gupta, A. Chem. Commun. 2012, 48, 4956. https://doi.org/10.1039/c2cc31648j.Search in Google Scholar PubMed
9. Beraich, M., Taibi, M., Guenbour, A., Zarrouk, A., Boudalia, M., Bellaouchou, A., Tabyaoui, M., Mansouri, S., Sekkat, Z., Fahoume, M. Optik 2019, 193, 162996. https://doi.org/10.1016/j.ijleo.2019.162996.Search in Google Scholar
10. Maldar, P. S., Gaikwad, M. A., Mane, A. A., Nikam, S. S., Desai, S. P., Giri, S. D., Sarkar, A., Moholkar, A. V. J. Sol. Energy 2017, 158, 89–99. https://doi.org/10.1016/j.solener.2017.09.036.Search in Google Scholar
11. Guan, H., Wang, X., Huang, Y. Chalcogenide Lett. 2018, 15, 435–440.Search in Google Scholar
12. Liang, X., Wei, X., Pan, D. J. Nanomater. 2012, 2012, 15. https://doi.org/10.1155/2012/708648.Search in Google Scholar
13. Xiao, C., Li, K., Zhang, J., Tong, W., Liu, Y., Li, Z., Huang, P., Pan, B., Su, H., Xie, Y. Mater. Horiz. 2014, 1, 81–86. https://doi.org/10.1039/C3MH00091E.Search in Google Scholar
14. Ai, L., Jiang, J. J. Mater. Chem. 2012, 22, 20586. https://doi.org/10.1039/c2jm34499h.Search in Google Scholar
15. Gurav, K. V., Shin, S. W., Patil, U. M., Deshmukh, P. R., Suryawanshi, M. P., Agawane, G. L., Pawar, S. M., Patil, P. S., Lee, J. Y., Lokhande, C. D., Kim, J. H. Sens. Actuators B: Chem. 2014, 190, 408–413. https://doi.org/10.1016/j.snb.2013.08.064.Search in Google Scholar
16. Gillorin, A., Balocchi, A., Marie, X., Dufour, P., Chane-Ching, J. Y. J. Mater. Chem. 2011, 21, 5615. https://doi.org/10.1039/c0jm03964k.Search in Google Scholar
17. Gonce, M. K., Aslan, E., Ozel, F., Hatay-Patir, I. ChemSusChem 2016, 9, 600–605. https://doi.org/10.1002/cssc.201501661.Search in Google Scholar PubMed
18. López-Vergara, F., Galdámez, A., Manríquez, V., González, G. Solid State Sci. 2015, 49, 54–60. https://doi.org/10.1016/j.solidstatesciences.2015.09.010.Search in Google Scholar
19. An, C., Tang, K., Shen, G., Wang, C., Huang, L., Qian, Y. Mater. Res. Bull. 2003, 38, 823–830. https://doi.org/10.1016/S0025-5408(03)00046-1.Search in Google Scholar
20. López-Vergara, F., Galdámez, A., Manríquez, V., González, G. Solid State Sci. 2015, 49, 54–60. https://doi.org/10.1016/j.solidstatesciences.2015.09.010.Search in Google Scholar
21. Benchikri, M., Zaberca, O., El Ouatib, R., Durand, B., Oftinger, F., Balocchi, A., Chane–Ching, J. Y. A high temperature route to the formation of highly pure quaternary chalcogenide particles. Mater. Lett. 2012, 68, 340–343. https://doi.org/10.1016/j.matlet.2011.10.105.Search in Google Scholar
22. Hammami, H., Marzougui, M., Oueslati, H., Rabeh, M. B., Kanzari, M. Optik 2021, 227, 166054. https://doi.org/10.1016/j.ijleo.2020.166054.Search in Google Scholar
23. Wang, T., Zhan, Q., Cheng, W. J Mater Sci: J. Electron. Mater. 2019, 30, 2285–2291. https://doi.org/10.1007/s10854-018-0499-6.Search in Google Scholar
24. Dias, S., Murali, B., Krupanidhi, S. B. Mater. Chem. Phys. 2015, 167, 309–314. https://doi.org/10.1016/j.matchemphys.2015.10.049.Search in Google Scholar
25. Maldar, P. S., Mane, A. A., Nikam, S. S., Dhas, S. D., Moholkar, A. V. Thin Solid Films 2020, 709, 138236. https://doi.org/10.1016/j.tsf.2020.138236.Search in Google Scholar
26. Valle Rios, L. E., Neldner, K., Gurieva, G., Schorr, S. J. Alloys Compd. 2016, 657, 408–413. https://doi.org/10.1016/j.jallcom.2015.09.198.Search in Google Scholar
27. Manjula, S., Sarathkumar, A., Sivakumar, G. J. Nano Res. 2023, 79, 25–36. https://doi.org/10.4028/p-b6b546.Search in Google Scholar
28. Harinipriya, S., Cassian, H., Sudha, V. J. Mater. Res. Technol. 2021, 15, 3558–3569. https://doi.org/10.1016/j.jmrt.2021.09.134.Search in Google Scholar
29. Fernandes, P. A., Salomé, P. M. P., Da Cunha, A. F. Thin Solid Films 2009, 517, 2519–2523. https://doi.org/10.1016/j.tsf.2008.11.031.Search in Google Scholar
30. Meng, X., Deng, H., Tao, J., Cao, H., Li, X., Sun, L., Yang, P., Chu, J. J. Alloys Compd. 2016, 680, 446–451. https://doi.org/10.1016/j.jallcom.2016.04.166.Search in Google Scholar
31. Krishnaiah, M., Bhargava, P., Mallick, S. RSC Adv. 2015, 5, 96928–96933. https://doi.org/10.1039/C5RA18679J.Search in Google Scholar
32. Khare, A., Himmetoglu, B., Johnson, M., Norris, D. J., Cococcioni, M., Aydil, E. S. J. Appl. Phys. 2012, 111, 083707. https://doi.org/10.1063/1.4704191.Search in Google Scholar
33. Krishnaiah, M., Kumar, A., Jin, S. H., Park, J. T. Mater. Lett. 2019, 254, 9–12. https://doi.org/10.1016/j.matlet.2019.06.074.Search in Google Scholar
34. Xie, Y., Zhang, C., Yang, G., Yang, J., Zhou, X., Ma, J. J. Alloys Compd. 2017, 696, 938–946. https://doi.org/10.1016/j.jallcom.2016.12.043.Search in Google Scholar
35. Özel, F., Sarılmaz, A., İstanbullu, B. Sci. Rep. 2016, 6, 29207. https://doi.org/10.1038/srep29207.Search in Google Scholar PubMed PubMed Central
36. Miao, X., Chen, R., Cheng, W. Mater. Lett. 2017, 193, 183–186. https://doi.org/10.1016/j.matlet.2017.01.099.Search in Google Scholar
37. Zhong, J., Wang, Q., Cai, W. Mater. Lett. 2015, 150, 69–72. https://doi.org/10.1016/j.matlet.2015.03.006.Search in Google Scholar
38. Baid, M., Hashmi, A., Jain, B., Singh, A. K., Susan, M. A. B. H., Aleksandrova, M. Opt. Quantum Electron. 2021, 53, 1–45. https://10.1007%2Fs11082-021-03272-5.Search in Google Scholar
39. Ghosh, A., Biswas, A., Thangavel, R., Udayabhanu, G. RSC Adv. 2016, 6, 96025–96034. https://doi.org/10.1039/C6RA15700A.Search in Google Scholar
40. Ata, S., Zaheer, W., Tabassum, A., Ul Mohsin, I., Altaf, I., ur Rehman, A., Al Huwayz, M., Alwadai, N., Nazir, A., Iqbal, M. Zn/Mn co-doped NiO synthesized by sol-gel route for the photocatalytic degradation of methylene blue dye. ChemistrySelect 2023, 8, e202301940.10.1002/slct.202301940Search in Google Scholar
41. Majid, F., Bashir, M., Bibi, I., Ayub, M., Shahzad Khan, B., Somaily, H. H., Al-Mijalli, S. H., Nazir, A., Iqbal, S., Iqbal, M. Green synthesis of magnetic Fe3O4 nanoflakes using vegetables extracts and their magnetic, structural and antibacterial properties evaluation. Z. Phys. Chem. 2023, 237, 1345–1360.10.1515/zpch-2022-0097Search in Google Scholar
42. Muqaddas, S., Javed, M., Nadeem, S., Asghar, M. A., Ali, H., Ahmad, M., AhmadAshraf, R., Nazir, A., Iqbal, M., Alwadai, N., Ahmad, A., Ali, A. Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors. ACS Omega 2023, 8, 30868–30878.10.1021/acsomega.2c06594Search in Google Scholar PubMed PubMed Central
43. Iqbal, Z., Imran, M., Latif, S., Nazir, A., Ibrahim, S. M., Ahmad, I., Iqbal, M., Iqbal, S. Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles. Z. Phys. Chem. 2023, 237, 1139–1152.10.1515/zpch-2022-0113Search in Google Scholar
44. Nazeer, Z., Bibi, I., Majid, F., Kamal, S., Imran Arshad, M., Ghafoor, A., Alwadai, N., Ali, A., Nazir, A., Iqbal, M. Optical, photocatalytic, electrochemical, magnetic, dielectric, and ferroelectric properties of Cd- and Er-doped BiFeO3 prepared via a facile microemulsion route. ACS Omega 2023, 8, 24980–24998.10.1021/acsomega.3c01542Search in Google Scholar PubMed PubMed Central
45. Ali Anosha Safdar, F., Younas, U., Sillanpaa, M., Pervaiz, M., Nazir, A., Naeem, M., Iqbal, M., Al-Kahtani, Tighezza, A. M. Kinetics of simultaneous degradation of brilliant green and methyl orange using biosynthesized high functional Ag nanoparticles. Z. Phys. Chem. 2023, 237, 599–616.10.1515/zpch-2022-0098Search in Google Scholar
46. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Jamil, Y., Bajwa, S. Z., Sarwar, Y., Rasul, S. Laser ablation assisted preparation of MnO2 nanocolloids from waste battery cell powder: evaluation of physico-chemical, electrical and biological properties. J. Mol. Struct. 2019, 1191, 284–290.10.1016/j.molstruc.2019.04.094Search in Google Scholar
47. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Bajwa, S. Z., Rahmat, R., Nazir, A. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Tech. 2019, 8, 5149–5159.10.1016/j.jmrt.2019.08.038Search in Google Scholar
48. Umair, H. M., Bibi, I., Majid, F., Kamal, S., Alwadai, N., Arshad, M. I., Ali, A., Nouren, S., Al Huwayz, M., Iqbal, M. Ferroelectric, dielectric, magnetic and photocatalytic properties of Mn doped Ca-hexaferrite prepared via microemulsion route. Mater. Chem. Phys. 2023, 307, 128152.10.1016/j.matchemphys.2023.128152Search in Google Scholar
49. Ghafoor, A., Bibi, I., Majid, F., Kamal, S., Jilani, K., Sultan, M., Alwadai, N., Ali, A., Ali, A., Nazir, A., Iqbal, M. Electrochemical, ferroelectric and dielectric properties of Gd, Fe and Mn doped nickel perovskite with robust photocatalytic activity under visible light. Mater. Sci. Semicond. Proces. 2023, 160, 107408.10.1016/j.mssp.2023.107408Search in Google Scholar
50. Fatima, G., Bibi, I., Majid, F., Kamal, S., Nouren, S., Ghafoor, A., Raza, Q., Al-Mijalli, S. H., Alnafisi, N. M., Iqbal, M. Mn-doped BaFe12O19 nanoparticles synthesis via micro-emulsion route: solar light-driven photo-catalytic degradation of CV, MG and RhB dyes and antibacterial activity. Mater. Res. Bull. 2023, 168, 112491.10.1016/j.materresbull.2023.112491Search in Google Scholar
51. Rasheed, A., Bibi, I., Majid, F., Kamal, S., Taj, B., Raza, M., Khaliq, N., Katubi, K. M., Ezzine, S., Alwadai, N. Mn doped SrFe12O19 fabricated via facile microemulsion route and solar-light-driven photocatalytic removal of crystal violet dye. Phys. B 2022, 646, 414303.10.1016/j.physb.2022.414303Search in Google Scholar
52. Rahmat, M., Bhatti, H. N., Rehman, A., Chaudhry, H., Yameen, M., Iqbal, M., Al-Mijalli, S. H., Alwadai, N., Fatima, M., Abbas, M. Bionanocomposite of Au decorated MnO2 via in situ green synthesis route and antimicrobial activity evaluation. Arabian J. Chem. 2021, 14, 103415.10.1016/j.arabjc.2021.103415Search in Google Scholar
53. Nazir, A., Qadir, S., Ashiq, M. N., Ali, A., Elsaeedy, H. I., Alwadai, N., Bibi, I., Iqbal, S., Kausar, A., Iqbal, M. Fabrication of low over-potential manganese doped samarium oxide as synergistic electro-catalyst for generation of sustainable energy. Mater. Chem. Phys. 2023, 309, 128346.10.1016/j.matchemphys.2023.128346Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Bi2O3/ZnO heterostructured semiconductor nanocomposites: synthesis, characterization and its visible light-induced degradation of methylene blue dye
- Hydrothermal synthesis of Cu2CoSnS4 nanoparticles: characterization and their applications of electrochemical, antibacterial and photocatalytic performances
- Synthesis structural optical and mechanical properties of Nb3⁺ doped Zinc Borophosphate glass for radiation shielding application
- Oil mediated polymer based green synthesis of calcium hydroxide nanoparticles and their application in bone conservation
- Synthesis, molecular modeling, quantum chemical calculations and in silico drug profiling of the novel (4-phenylpiperazin-1-ium) hydrogenfumarate as a tyrosinase inhibitor
- Examining the design characteristics of a dual-material gate all-around tunnel FET for use in biosensing applications
- Investigation of structural, optical and thermodynamic properties of FrBO3 (B = Ta, Nb) perovskites: first principles calculations
- Temporal and thermal dynamics exploration of different detergents’ formulations components on fungal alkaliphilic lipases stability
- Role of sodium alginate on the modification of the interfacial, micellization and thermodynamic properties of two imidazolium-based surface active ionic liquids in water
- Organic and inorganic pollutants removal from tannery effluent using electrocoagulation technique
Articles in the same Issue
- Frontmatter
- Original Papers
- Bi2O3/ZnO heterostructured semiconductor nanocomposites: synthesis, characterization and its visible light-induced degradation of methylene blue dye
- Hydrothermal synthesis of Cu2CoSnS4 nanoparticles: characterization and their applications of electrochemical, antibacterial and photocatalytic performances
- Synthesis structural optical and mechanical properties of Nb3⁺ doped Zinc Borophosphate glass for radiation shielding application
- Oil mediated polymer based green synthesis of calcium hydroxide nanoparticles and their application in bone conservation
- Synthesis, molecular modeling, quantum chemical calculations and in silico drug profiling of the novel (4-phenylpiperazin-1-ium) hydrogenfumarate as a tyrosinase inhibitor
- Examining the design characteristics of a dual-material gate all-around tunnel FET for use in biosensing applications
- Investigation of structural, optical and thermodynamic properties of FrBO3 (B = Ta, Nb) perovskites: first principles calculations
- Temporal and thermal dynamics exploration of different detergents’ formulations components on fungal alkaliphilic lipases stability
- Role of sodium alginate on the modification of the interfacial, micellization and thermodynamic properties of two imidazolium-based surface active ionic liquids in water
- Organic and inorganic pollutants removal from tannery effluent using electrocoagulation technique