Home Hydrothermal synthesis of Cu2CoSnS4 nanoparticles: characterization and their applications of electrochemical, antibacterial and photocatalytic performances
Article
Licensed
Unlicensed Requires Authentication

Hydrothermal synthesis of Cu2CoSnS4 nanoparticles: characterization and their applications of electrochemical, antibacterial and photocatalytic performances

  • Selvam Manjula , Ganesan Sivakumar EMAIL logo , Panneerselvam Dhamodharan , Ayyar Dinesh , Saravana Kumar Jaganathan and Manikandan Ayyar
Published/Copyright: January 3, 2024

Abstract

A hydrothermal technique was used to successfully synthesize tetragonal Cu2CoSnS4 (CCTS) nanoparticles and investigate the effect of various thiourea concentrations on structural, morphological and optical properties. XRD analysis revealed the formation of tetragonal CCTS nanoparticles and the average crystallite size (nm) varied from 26 to 40 nm. The Raman studies confirmed the vibrational modes of the CCTS nanoparticles. The FE-SEM images revealed that the thiourea concentrations induced morphological changes in the CCTS nanoparticles, which exhibited the nanosheets changing into spherical structures. TEM images indicated that the CCTS sample had a spherical structure and the SAED pattern demonstrated a polycrystalline nature. The valance states of metallic species, such as Cu+ and Co2+ were further confirmed by XPS. The optical band gap (1.53 eV) was calculated from UV–Visible data and the obtained bandgap value from the literature. The electrochemical measurements of the CCTS TU-10 electrode exhibited pseudocapacitive behavior with a notable specific capacitance of 198 Fg−1 at a scan rate of 10 mV/S along with favorable electrocatalytic activity. In the photocatalytic application, when compared to MB dye (78 %), the CCTS catalyst was found to have a higher degradation efficiency toward CV dye (84 %). For antibacterial studies, the Vibrio parahaemolyticus bacteria exhibited the maximum zone of inhibition at 20 mm for 100 μg/ml. Finally, the experimental results suggested that the synthesized CCTS nanoparticles had better electrochemical, photocatalytic, and antibacterial properties.


Corresponding authors: Ganesan Sivakumar, Centralized Instrumentation and Service Laboratory, Department of Physics, Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India, E-mail:
The corresponding author wishes to thank the Head of the Department of Physics and Centralized Instrumentation and Service Laboratory (CISL), Annamalai University, Annamalai Nagar, Tamil Nādu, India, for providing the CV and analytical instrument facilities.

Acknowledgments

The corresponding author wishes to thank the Head of the Department of Physics and Centralized Instrumentation and Service Laboratory (CISL), Annamalai University, Annamalai Nagar, Tamil Nādu, India, for providing the CV and analytical instrument facilities.

  1. Research ethics: Not applicable.

  2. Author contributions: S. Manjula, G. Sivakumar, P. Dhamodharan - Conceptualization, Methodology, Validation, Formal analysis, Writing Original Draft, Writing- Review, Visualization; S. Manjula, G. Sivakumar, P. Dhamodharan - Investigation, Supervision, Project administration, Writing- Editing; S. Manjula, G. Sivakumar, P. Dhamodharan - Resources, Project administration, Writing- Editing; A. Dinesh, Saravana Kumar Jaganathan, Manikandan Ayyar - Conceptualization, Software, Resources, Investigation, Writing- Editing.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Wang, R., Xu, C., Lee, J.-M. Nano Energy 2016, 19, 210–221. https://doi.org/10.1016/j.nanoen.2015.10.030.Search in Google Scholar

2. Vigneshwaran, P., Kandiban, M., Senthil Kumar, N., Venkatachalam, V., Jayavel, R., Vetha Potheher, I. J. Mater. Sci.: Mater. Electron. 2016, 27, 4653–4658; https://doi.org/10.1007/s10854-016-4343-6.Search in Google Scholar

3. Wang, C., Liu, J., Huang, H. Electrochim. Acta 2015, 182, 47–60; https://doi.org/10.1016/j.electacta.2015.08.158.Search in Google Scholar

4. Vijayakumar, S., Ponnalagi, A. K., Nagamuthu, S., Muralidharan, G. Electrochim. Acta 2013, 106, 500–505. https://doi.org/10.1016/j.electacta.2013.05.121.Search in Google Scholar

5. Rajavedhanayagam, J., Murugadoss, V., Maurya, D. K., Angaiah, S. ES Energy Environ. 2022, 18, 65–74; https://doi.org/10.30919/esee8c753.Search in Google Scholar

6. Ahmed, M. A., Bakr, N. A., Kamil, A. A. Chalcogenide Lett. 2019, 16, 231–239.Search in Google Scholar

7. Al-Zahrani, H. Y. S. J. Mater. Sci.: Mater. Electron. 2020, 31, 6900–6909. https://doi.org/10.1007/s10854-020-03252-7.Search in Google Scholar

8. Zhang, X., Bao, N., Ramasamy, K., Wang, Y.-H. A., Wang, Y., Lin, B., Gupta, A. Chem. Commun. 2012, 48, 4956. https://doi.org/10.1039/c2cc31648j.Search in Google Scholar PubMed

9. Beraich, M., Taibi, M., Guenbour, A., Zarrouk, A., Boudalia, M., Bellaouchou, A., Tabyaoui, M., Mansouri, S., Sekkat, Z., Fahoume, M. Optik 2019, 193, 162996. https://doi.org/10.1016/j.ijleo.2019.162996.Search in Google Scholar

10. Maldar, P. S., Gaikwad, M. A., Mane, A. A., Nikam, S. S., Desai, S. P., Giri, S. D., Sarkar, A., Moholkar, A. V. J. Sol. Energy 2017, 158, 89–99. https://doi.org/10.1016/j.solener.2017.09.036.Search in Google Scholar

11. Guan, H., Wang, X., Huang, Y. Chalcogenide Lett. 2018, 15, 435–440.Search in Google Scholar

12. Liang, X., Wei, X., Pan, D. J. Nanomater. 2012, 2012, 15. https://doi.org/10.1155/2012/708648.Search in Google Scholar

13. Xiao, C., Li, K., Zhang, J., Tong, W., Liu, Y., Li, Z., Huang, P., Pan, B., Su, H., Xie, Y. Mater. Horiz. 2014, 1, 81–86. https://doi.org/10.1039/C3MH00091E.Search in Google Scholar

14. Ai, L., Jiang, J. J. Mater. Chem. 2012, 22, 20586. https://doi.org/10.1039/c2jm34499h.Search in Google Scholar

15. Gurav, K. V., Shin, S. W., Patil, U. M., Deshmukh, P. R., Suryawanshi, M. P., Agawane, G. L., Pawar, S. M., Patil, P. S., Lee, J. Y., Lokhande, C. D., Kim, J. H. Sens. Actuators B: Chem. 2014, 190, 408–413. https://doi.org/10.1016/j.snb.2013.08.064.Search in Google Scholar

16. Gillorin, A., Balocchi, A., Marie, X., Dufour, P., Chane-Ching, J. Y. J. Mater. Chem. 2011, 21, 5615. https://doi.org/10.1039/c0jm03964k.Search in Google Scholar

17. Gonce, M. K., Aslan, E., Ozel, F., Hatay-Patir, I. ChemSusChem 2016, 9, 600–605. https://doi.org/10.1002/cssc.201501661.Search in Google Scholar PubMed

18. López-Vergara, F., Galdámez, A., Manríquez, V., González, G. Solid State Sci. 2015, 49, 54–60. https://doi.org/10.1016/j.solidstatesciences.2015.09.010.Search in Google Scholar

19. An, C., Tang, K., Shen, G., Wang, C., Huang, L., Qian, Y. Mater. Res. Bull. 2003, 38, 823–830. https://doi.org/10.1016/S0025-5408(03)00046-1.Search in Google Scholar

20. López-Vergara, F., Galdámez, A., Manríquez, V., González, G. Solid State Sci. 2015, 49, 54–60. https://doi.org/10.1016/j.solidstatesciences.2015.09.010.Search in Google Scholar

21. Benchikri, M., Zaberca, O., El Ouatib, R., Durand, B., Oftinger, F., Balocchi, A., Chane–Ching, J. Y. A high temperature route to the formation of highly pure quaternary chalcogenide particles. Mater. Lett. 2012, 68, 340–343. https://doi.org/10.1016/j.matlet.2011.10.105.Search in Google Scholar

22. Hammami, H., Marzougui, M., Oueslati, H., Rabeh, M. B., Kanzari, M. Optik 2021, 227, 166054. https://doi.org/10.1016/j.ijleo.2020.166054.Search in Google Scholar

23. Wang, T., Zhan, Q., Cheng, W. J Mater Sci: J. Electron. Mater. 2019, 30, 2285–2291. https://doi.org/10.1007/s10854-018-0499-6.Search in Google Scholar

24. Dias, S., Murali, B., Krupanidhi, S. B. Mater. Chem. Phys. 2015, 167, 309–314. https://doi.org/10.1016/j.matchemphys.2015.10.049.Search in Google Scholar

25. Maldar, P. S., Mane, A. A., Nikam, S. S., Dhas, S. D., Moholkar, A. V. Thin Solid Films 2020, 709, 138236. https://doi.org/10.1016/j.tsf.2020.138236.Search in Google Scholar

26. Valle Rios, L. E., Neldner, K., Gurieva, G., Schorr, S. J. Alloys Compd. 2016, 657, 408–413. https://doi.org/10.1016/j.jallcom.2015.09.198.Search in Google Scholar

27. Manjula, S., Sarathkumar, A., Sivakumar, G. J. Nano Res. 2023, 79, 25–36. https://doi.org/10.4028/p-b6b546.Search in Google Scholar

28. Harinipriya, S., Cassian, H., Sudha, V. J. Mater. Res. Technol. 2021, 15, 3558–3569. https://doi.org/10.1016/j.jmrt.2021.09.134.Search in Google Scholar

29. Fernandes, P. A., Salomé, P. M. P., Da Cunha, A. F. Thin Solid Films 2009, 517, 2519–2523. https://doi.org/10.1016/j.tsf.2008.11.031.Search in Google Scholar

30. Meng, X., Deng, H., Tao, J., Cao, H., Li, X., Sun, L., Yang, P., Chu, J. J. Alloys Compd. 2016, 680, 446–451. https://doi.org/10.1016/j.jallcom.2016.04.166.Search in Google Scholar

31. Krishnaiah, M., Bhargava, P., Mallick, S. RSC Adv. 2015, 5, 96928–96933. https://doi.org/10.1039/C5RA18679J.Search in Google Scholar

32. Khare, A., Himmetoglu, B., Johnson, M., Norris, D. J., Cococcioni, M., Aydil, E. S. J. Appl. Phys. 2012, 111, 083707. https://doi.org/10.1063/1.4704191.Search in Google Scholar

33. Krishnaiah, M., Kumar, A., Jin, S. H., Park, J. T. Mater. Lett. 2019, 254, 9–12. https://doi.org/10.1016/j.matlet.2019.06.074.Search in Google Scholar

34. Xie, Y., Zhang, C., Yang, G., Yang, J., Zhou, X., Ma, J. J. Alloys Compd. 2017, 696, 938–946. https://doi.org/10.1016/j.jallcom.2016.12.043.Search in Google Scholar

35. Özel, F., Sarılmaz, A., İstanbullu, B. Sci. Rep. 2016, 6, 29207. https://doi.org/10.1038/srep29207.Search in Google Scholar PubMed PubMed Central

36. Miao, X., Chen, R., Cheng, W. Mater. Lett. 2017, 193, 183–186. https://doi.org/10.1016/j.matlet.2017.01.099.Search in Google Scholar

37. Zhong, J., Wang, Q., Cai, W. Mater. Lett. 2015, 150, 69–72. https://doi.org/10.1016/j.matlet.2015.03.006.Search in Google Scholar

38. Baid, M., Hashmi, A., Jain, B., Singh, A. K., Susan, M. A. B. H., Aleksandrova, M. Opt. Quantum Electron. 2021, 53, 1–45. https://10.1007%2Fs11082-021-03272-5.Search in Google Scholar

39. Ghosh, A., Biswas, A., Thangavel, R., Udayabhanu, G. RSC Adv. 2016, 6, 96025–96034. https://doi.org/10.1039/C6RA15700A.Search in Google Scholar

40. Ata, S., Zaheer, W., Tabassum, A., Ul Mohsin, I., Altaf, I., ur Rehman, A., Al Huwayz, M., Alwadai, N., Nazir, A., Iqbal, M. Zn/Mn co-doped NiO synthesized by sol-gel route for the photocatalytic degradation of methylene blue dye. ChemistrySelect 2023, 8, e202301940.10.1002/slct.202301940Search in Google Scholar

41. Majid, F., Bashir, M., Bibi, I., Ayub, M., Shahzad Khan, B., Somaily, H. H., Al-Mijalli, S. H., Nazir, A., Iqbal, S., Iqbal, M. Green synthesis of magnetic Fe3O4 nanoflakes using vegetables extracts and their magnetic, structural and antibacterial properties evaluation. Z. Phys. Chem. 2023, 237, 1345–1360.10.1515/zpch-2022-0097Search in Google Scholar

42. Muqaddas, S., Javed, M., Nadeem, S., Asghar, M. A., Ali, H., Ahmad, M., AhmadAshraf, R., Nazir, A., Iqbal, M., Alwadai, N., Ahmad, A., Ali, A. Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors. ACS Omega 2023, 8, 30868–30878.10.1021/acsomega.2c06594Search in Google Scholar PubMed PubMed Central

43. Iqbal, Z., Imran, M., Latif, S., Nazir, A., Ibrahim, S. M., Ahmad, I., Iqbal, M., Iqbal, S. Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles. Z. Phys. Chem. 2023, 237, 1139–1152.10.1515/zpch-2022-0113Search in Google Scholar

44. Nazeer, Z., Bibi, I., Majid, F., Kamal, S., Imran Arshad, M., Ghafoor, A., Alwadai, N., Ali, A., Nazir, A., Iqbal, M. Optical, photocatalytic, electrochemical, magnetic, dielectric, and ferroelectric properties of Cd- and Er-doped BiFeO3 prepared via a facile microemulsion route. ACS Omega 2023, 8, 24980–24998.10.1021/acsomega.3c01542Search in Google Scholar PubMed PubMed Central

45. Ali Anosha Safdar, F., Younas, U., Sillanpaa, M., Pervaiz, M., Nazir, A., Naeem, M., Iqbal, M., Al-Kahtani, Tighezza, A. M. Kinetics of simultaneous degradation of brilliant green and methyl orange using biosynthesized high functional Ag nanoparticles. Z. Phys. Chem. 2023, 237, 599–616.10.1515/zpch-2022-0098Search in Google Scholar

46. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Jamil, Y., Bajwa, S. Z., Sarwar, Y., Rasul, S. Laser ablation assisted preparation of MnO2 nanocolloids from waste battery cell powder: evaluation of physico-chemical, electrical and biological properties. J. Mol. Struct. 2019, 1191, 284–290.10.1016/j.molstruc.2019.04.094Search in Google Scholar

47. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Bajwa, S. Z., Rahmat, R., Nazir, A. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Tech. 2019, 8, 5149–5159.10.1016/j.jmrt.2019.08.038Search in Google Scholar

48. Umair, H. M., Bibi, I., Majid, F., Kamal, S., Alwadai, N., Arshad, M. I., Ali, A., Nouren, S., Al Huwayz, M., Iqbal, M. Ferroelectric, dielectric, magnetic and photocatalytic properties of Mn doped Ca-hexaferrite prepared via microemulsion route. Mater. Chem. Phys. 2023, 307, 128152.10.1016/j.matchemphys.2023.128152Search in Google Scholar

49. Ghafoor, A., Bibi, I., Majid, F., Kamal, S., Jilani, K., Sultan, M., Alwadai, N., Ali, A., Ali, A., Nazir, A., Iqbal, M. Electrochemical, ferroelectric and dielectric properties of Gd, Fe and Mn doped nickel perovskite with robust photocatalytic activity under visible light. Mater. Sci. Semicond. Proces. 2023, 160, 107408.10.1016/j.mssp.2023.107408Search in Google Scholar

50. Fatima, G., Bibi, I., Majid, F., Kamal, S., Nouren, S., Ghafoor, A., Raza, Q., Al-Mijalli, S. H., Alnafisi, N. M., Iqbal, M. Mn-doped BaFe12O19 nanoparticles synthesis via micro-emulsion route: solar light-driven photo-catalytic degradation of CV, MG and RhB dyes and antibacterial activity. Mater. Res. Bull. 2023, 168, 112491.10.1016/j.materresbull.2023.112491Search in Google Scholar

51. Rasheed, A., Bibi, I., Majid, F., Kamal, S., Taj, B., Raza, M., Khaliq, N., Katubi, K. M., Ezzine, S., Alwadai, N. Mn doped SrFe12O19 fabricated via facile microemulsion route and solar-light-driven photocatalytic removal of crystal violet dye. Phys. B 2022, 646, 414303.10.1016/j.physb.2022.414303Search in Google Scholar

52. Rahmat, M., Bhatti, H. N., Rehman, A., Chaudhry, H., Yameen, M., Iqbal, M., Al-Mijalli, S. H., Alwadai, N., Fatima, M., Abbas, M. Bionanocomposite of Au decorated MnO2 via in situ green synthesis route and antimicrobial activity evaluation. Arabian J. Chem. 2021, 14, 103415.10.1016/j.arabjc.2021.103415Search in Google Scholar

53. Nazir, A., Qadir, S., Ashiq, M. N., Ali, A., Elsaeedy, H. I., Alwadai, N., Bibi, I., Iqbal, S., Kausar, A., Iqbal, M. Fabrication of low over-potential manganese doped samarium oxide as synergistic electro-catalyst for generation of sustainable energy. Mater. Chem. Phys. 2023, 309, 128346.10.1016/j.matchemphys.2023.128346Search in Google Scholar

Received: 2023-10-30
Accepted: 2023-12-03
Published Online: 2024-01-03
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0428/html
Scroll to top button