Startseite Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I

  • Nikita Bystrov , Alexander Emelianov , Alexander Eremin und Pavel Yatsenko ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. Januar 2024

Abstract

The present work expands previous studies on the kinetics of the n-C3H7I unimolecular decomposition and the thermodynamic properties of n-C3H7I and i-C3H7I molecules, by providing combined experimental and theoretical data on the rate constant for reaction of n-C3H7I + Ar ⇌ n-C3H7 + I + Ar, as well as thermodynamic data for iodopropane isomers, calculated based on the density functional theory. The n-C3H7I dissociation rate constant has been precisely determined in shock-tube experiments by applying atomic resonance absorption spectrometry (ARAS) at the resonance transition wavelength of atomic iodine (183.0 nm) in a temperature range from 830 to 1230 K at a pressure of 3–4 bar. The resulting expression is presented in the Arrhenius form: k1st = 1.17 × 1013exp(−191.4 kJ mol−1/RT) (s−1). Theoretical RRKM/ME calculation of the temperature- and pressure-dependent rate constant and channel branching ratio have been based on quantum chemical calculations and were performed over a wide range of thermodynamic conditions (T = 300–2000 K, p = 10−4 to 102 bar). Additionally, the thermochemistry of the reactions of n-C3H7I dissociation and isomerization has been calculated on B3LYP/cc-pVTZ-PP level of theory. Thermodynamic data, which are provided in NASA polynomial format, are in a better agreement with the available experimental data and previous theoretical estimates.


Corresponding author: Pavel Yatsenko, Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow 125412, Russia, E-mail:

Acknowledgments

The authors express their deep gratitude to Professor Alexander Mebel (Florida International University) for valuable comments and help in mastering theoretical calculations.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request fron the corresponding author.

References

1. Drakon, A. V., Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. High Temp. 2017, 55, 239–245; https://doi.org/10.1134/s0018151x17020043.Suche in Google Scholar

2. Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. J. Phys.: Conf. Ser. 2018, 946, 012070; https://doi.org/10.1088/1742-6596/946/1/012070.Suche in Google Scholar

3. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. J. Phys. D: Appl. Phys. 2018, 51, 184004; https://doi.org/10.1088/1361-6463/aab8e5.Suche in Google Scholar

4. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Loukhovitski, B. I., Sharipov, A. S., Yatsenko, P. I. Int. J. Chem. Kinet. 2019, 51, 206–214; https://doi.org/10.1002/kin.21244.Suche in Google Scholar

5. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Loukhovitski, B. I., Sharipov, A. S., Yatsenko, P. I. J. Phys.: Conf. Ser. 2020, 1556, 012037; https://doi.org/10.1088/1742-6596/1556/1/012037.Suche in Google Scholar

6. Bentz, T., Szori, M., Viskolcz, B., Olzmann, M. Z. Phys. Chem. 2011, 225, 1117–1128; https://doi.org/10.1524/zpch.2011.0178.Suche in Google Scholar

7. Ackermann, L., Hippler, H., Pagsberg, P., Reihs, C., Troe, J. J. Phys. Chem. 1990, 94, 5247; https://doi.org/10.1021/j100376a015.Suche in Google Scholar

8. Herzler, J., Frank, P. Ber. Bunsenges. Phys. Chem. 1992, 96, 1333; https://doi.org/10.1002/bbpc.19920961003.Suche in Google Scholar

9. Takahashi, K., Yamamoto, O., Inomata, T., Kogoma, M. Int. J. Chem. Kinet. 2007, 39, 97; https://doi.org/10.1002/kin.20225.Suche in Google Scholar

10. Kunz, A., Roth, P. Ber. Bunsenges. Phys. Chem. 1998, 102, 73; https://doi.org/10.1002/bbpc.19981020109.Suche in Google Scholar

11. Peukert, S., Herzler, J., Mu, F., Schulz, C. Int. J. Chem. Kinet. 2018, 50, 57–72; https://doi.org/10.1002/kin.21140.Suche in Google Scholar

12. Peukert, S., Yatsenko, P., Mu, F., Schulz, C. J. Phys. Chem. A 2018, 122, 5289–5298; https://doi.org/10.1021/acs.jpca.8b03160.Suche in Google Scholar PubMed

13. Jones, J. L., Ogg, R. A. J. Am. Chem. Soc. 1937, 59, 1939–1942; https://doi.org/10.1021/ja01289a042.Suche in Google Scholar

14. Kumaran, S. S., Su, M. C., Michael, I. V. Int. J. Chem. Kinet. 1997, 29, 535–543; https://doi.org/10.1002/(sici)1097-4601(1997)29:7<535::aid-kin8>3.0.co;2-v.Suche in Google Scholar

15. Yang, X. L., Goldsmith, C. F., Tranter, R. S. J. Phys. Chem. A 2009, 113, 8307–8317; https://doi.org/10.1021/jp903336u.Suche in Google Scholar PubMed

16. Goos, E., Burcat, A., Ruscic, B. Third Millennium Ideal Gas and Condensed Phase Thermochemical Database For Combustion With Updates from Active Thermochemical Tables; Chemistry Division, Argonne National Laboratory: Argonne, Illinois (USA), 2005.10.2172/925269Suche in Google Scholar

17. Yang, X. L., Tranter, R. S. Int. J. Chem. Kinet. 2012, 44, 433–443; https://doi.org/10.1002/kin.20601.Suche in Google Scholar

18. Varga, T., Zsely, I. G., Turanyi, T., Bentz, T., Olzmann, M. Int. J. Chem. Kinet. 2014, 46, 295–304; https://doi.org/10.1002/kin.20829.Suche in Google Scholar

19. Butler, E. T., Polanyi, M. Trans. Faraday Soc. 1943, 39, 19; https://doi.org/10.1039/tf9433900019.Suche in Google Scholar

20. Tsang, W.. J. Chem. Phys. 1964, 41, 2487–2494; https://doi.org/10.1063/1.1726292.Suche in Google Scholar

21. Hippler, H., Riedl, A., Troe, J., Willner, J. Z. Phys. Chem. 1991, 171, 161–177; https://doi.org/10.1524/zpch.1991.171.part_2.161.Suche in Google Scholar

22. Awan, I. A., Burgess, D. R., Manion, J. A. J. Phys. Chem. A 2012, 116, 2895–2910; https://doi.org/10.1021/jp2115302.Suche in Google Scholar PubMed

23. Pedley, J. B., Naylor, R. D., Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd ed.; Chapman & Hall: New York, 1986.10.1007/978-94-009-4099-4Suche in Google Scholar

24. Stein, S. E. NIST Structure and Properties (Version 2.0); National Institute of Standards and Technology: Gaithersburg (USA), 1994.Suche in Google Scholar

25. Denoosv, E. T., Tumanov, V. E. Russ. Chem. Rev. 2005, 74, 825–858; https://doi.org/10.1070/rc2005v074n09abeh001177.Suche in Google Scholar

26. Trotman-Dickenson, A. F. Gas Kinetics; Butterworths Scientific Publications: Butterworths, London, 1955.Suche in Google Scholar

27. Benson, S. W., Amano, A. J. Chem. Phys. 1962, 36, 3464; https://doi.org/10.1063/1.1732481.Suche in Google Scholar

28. Furuyama, S., Golden, D. M., Benson, S. W. J. Chem. Thermodyn. 1969, 1, 363–375; https://doi.org/10.1016/0021-9614(69)90066-4.Suche in Google Scholar

29. Andreevskii, D. N., Rozhnov, A. M. Petrol Chem. 1962, 2, 378.Suche in Google Scholar

30. Butler, E. T., Mandel, E., Polanyi, M. Trans. Faraday Soc. 1945, 41, 298–306; https://doi.org/10.1039/tf9454100298.Suche in Google Scholar

31. Sullivan, J.. J. Phys. Chem. 1961, 65, 722; https://doi.org/10.1021/j100823a005.Suche in Google Scholar

32. Benson, W. J. Chem. Phys. 1963, 38, 1945; https://doi.org/10.1063/1.1733901.Suche in Google Scholar

33. Teranishi, H., Benson, W. J. Chem. Phys. 1964, 40, 2946; https://doi.org/10.1063/1.1724930.Suche in Google Scholar

34. Holmes, J. L., Maccoll, A. J. Chem. Soc. 1963, 1127, 5919; https://doi.org/10.1039/jr9630005919.Suche in Google Scholar

35. Choudhary, G., Holmes, J. L. J. Chem. Soc. B 1968, 1265–1270; https://doi.org/10.1039/j29680001265.Suche in Google Scholar

36. King, K. D., Golden, D. M., Spokes, G. N., Benson, S. W. Int. J. Chem. Kinet. 1971, 3, 411–426; https://doi.org/10.1002/kin.550030504.Suche in Google Scholar

37. Miyoshi, A., Yamauchi, N., Kosaka, K., Koshi, M., Matsui, H. J. Phys. Chem. A 1999, 103, 46–53; https://doi.org/10.1021/jp982915u.Suche in Google Scholar

38. Kramida, A., Ralchenko, Y., Reader, J. and NIST ASD Team (2014). NIST Atomic Spectra Database (version 5.2); National Institute of Standards and Technology: Gaithersburg (USA), 2015.Suche in Google Scholar

39. Weber, K. H., Lemieux, J. M., Zhang, J. S. J. Phys. Chem. A 2009, 113, 583–591; https://doi.org/10.1021/jp808155a.Suche in Google Scholar PubMed

40. McGrath, M. P., Rowland, F. S. J. Phys. Chem. A 2002, 106, 8191; https://doi.org/10.1021/jp020986u.Suche in Google Scholar

41. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, H., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09 (Revision B.01); Gaussian, Inc.: Wallingford (England), 2009.Suche in Google Scholar

42. Becke, A. D. J. Chem. Phys. 1993, 98, 5648; https://doi.org/10.1063/1.464913.Suche in Google Scholar

43. Lee, C., Yang, W., Parr, R. G. Phys. Rev. 1988, 37, 785; https://doi.org/10.1103/physrevb.37.785.Suche in Google Scholar PubMed

44. Peterson, K. A., Shepler, B. C., Figgen, D., Stoll, H. J. Phys. Chem. A 2006, 110, 13877–13883; https://doi.org/10.1021/jp065887l.Suche in Google Scholar PubMed

45. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D., Windus, T. L. J. Chem. Inf. Model. 2019, 59, 4814–4820; https://doi.org/10.1021/acs.jcim.9b00725.Suche in Google Scholar PubMed

46. Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A. J. Chem. Phys. 1980, 72, 650–654; https://doi.org/10.1063/1.438955.Suche in Google Scholar

47. Johnson, R. D., Ed. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database (release 21, number 101); National Institute of Standards and Technology: Gaithersburg (USA), 2020.Suche in Google Scholar

48. Canneaux, S., Bohr, F., Henon, E. J. Comput. Chem. 2014, 35, 82–93; https://doi.org/10.1002/jcc.23470.Suche in Google Scholar PubMed

49. Miyoshi, A. GPOP Software (Revision 2013.07.15m5); Free Software Foundation, Inc.: Boston, Massachusetts (USA), 2013.Suche in Google Scholar

50. Ochterski, J. W. Thermochemistry in Gaussian (Release 2009); Gaussian, Inc.: Wallingford (England), 2009.Suche in Google Scholar

51. Klippenstein, S. J., Miller, J. A. J. Phys. Chem. A 2002, 106, 9267–9277; https://doi.org/10.1021/jp021175t.Suche in Google Scholar

52. Miller, J. A., Klippenstein, S. J. J. Phys. Chem. A 2006, 110, 10528–10544; https://doi.org/10.1021/jp062693x.Suche in Google Scholar PubMed

53. Cambi, R., Cappelletti, D., Liuti, G., Pirani, F. J. Chem. Phys. 1991, 95, 1852–1862.10.1063/1.461035Suche in Google Scholar

54. Silva, C. S., Lima, F. C. A. Comput. Theor. Chem. 2023, 1225, 114140.10.1016/j.comptc.2023.114140Suche in Google Scholar

55. Cheng, L., Shen, Z., Lu, J., Gao, H., Lu, Z. Chem. Phys. Lett. 2005, 416, 160–164; https://doi.org/10.1016/j.cplett.2005.09.076.Suche in Google Scholar

56. Ruscic, B., Pinzon, R. E., Von Laszewski, G., Kodeboyina, D., Burcat, A., Leahy, D., Montoy, D., Wagner, F. A. J. Phys.: Conf. Ser. 2005, 16, 561; https://doi.org/10.1088/1742-6596/16/1/078.Suche in Google Scholar

57. Ruscic, B., Bross, D. H. Active Thermochemical Tables of the Thermochemical Network (release 2020, version 1.122p); Argonne National Laboratory: Argonne, Illinois (USA), 2020.Suche in Google Scholar

58. Curtiss, L. A., Raghavachari, K., Redfern, P. C., Pople, J. A. J. Chem. Phys. 1997, 106, 1063; https://doi.org/10.1063/1.473182.Suche in Google Scholar

59. Chase, M. W. NIST-JANAF Themochemical Tables, Monograph 9, 4th ed.; American Chemical Society: Washington, DC, 1998.Suche in Google Scholar

60. Brand, W. A., Baer, T., Klots, C. E. Chem. Phys. 1983, 76, 111; https://doi.org/10.1016/0301-0104(83)85055-1.Suche in Google Scholar

61. Rosenstock, H. M., Buff, R., Ferreira, M. A. A., Lias, S. G., Parr, A. C., Stockbauer, R. L., Holmes, J. L. J. Am. Chem. Soc. 1982, 104, 2337; https://doi.org/10.1021/ja00373a001.Suche in Google Scholar

62. Zeleznik, F. J., Gordon, S. Simultaneous Least Square Approximation of a Function and its First Integrals, with Application to Thermodynamic Data, NASA Technical Note D-767, 1961.Suche in Google Scholar

63. Lide, D. R. Handbook of Chemistry and Physics, 84th ed.; CRC Press LLC: Boca Raton, 2003.Suche in Google Scholar

64. Kee, R. J., Rupley, F., Miller, J. A., Coltrin, M., Grcar, J. F., Meeks, E., Moffat, H., Lutz, A., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G., Larson, R., Mitchell, R., Petzold, L., Reynolds, W., Caracotsios, M., Stewart, W., Glarborg, P., Wang, C., McLellan, C., Adigun, O., Houf, W., Chou, C., Miller, S., Ho, P., Young, P., Young, D., Hodgson, D., Petrova, M., Puduppakkam, K. CHEMKIN-PRO, release (15101); Reaction Design, Inc.: San Diego (USA), 2010.Suche in Google Scholar

65. Kumaran, S. S., Su, M.-C., Lim, K. P., Michael, J. V. Proc. Combust. Inst. 1996, 26, 605; https://doi.org/10.1016/s0082-0784(96)80266-9.Suche in Google Scholar

66. Kumaran, S. S., Su, M. C., Michael, J. V. Chem. Phys. Lett. 1997, 269, 99–106; https://doi.org/10.1016/s0009-2614(97)00256-x.Suche in Google Scholar

67. Yang, J.-H., Conway, D. C. J. Chem. Phys. 1965, 43, 1296; https://doi.org/10.1063/1.1696918.Suche in Google Scholar

68. Shilov, A. E., Sabirova, R. D. Kinet. Catal. 1964, 5, 32–39.Suche in Google Scholar

69. Lin, C. C., Chen, W. Y., Matsui, H., Wang, N. S. J. Chem. Phys. 2017, 147, 064304; https://doi.org/10.1063/1.4997739.Suche in Google Scholar PubMed

70. Tranter, R. S., Klippenstein, S. J., Harding, L. B., Giri, B. R., Yang, X. L., Kiefer, J. H. J. Phys. Chem. A 2010, 114, 8240–8261; https://doi.org/10.1021/jp1031064.Suche in Google Scholar PubMed

71. Robaugh, D., Tsang, W. J. Phys. Chem. 1986, 90, 5363–5367; https://doi.org/10.1021/j100412a094.Suche in Google Scholar

72. Tedeev, R. S., Dymov, B. P., Skorobogatov, G. A. Vestn. Leningr. Univ. 1989, 1, 37–42.Suche in Google Scholar

73. Skorobogatov, G. A., Dymov, B. P., Khripun, V. K. Kinet. Catal. 1991, 32, 220–227.Suche in Google Scholar

74. Skorobogatov, G. A., Dymov, B. P., Nedozrelova, I. V. J. Org. Chem. (Zh. Org. Khim.) 1994, 64, 956–965.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0385).


Received: 2023-10-10
Accepted: 2024-01-03
Published Online: 2024-01-25
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0385/html
Button zum nach oben scrollen