Abstract
The present work expands previous studies on the kinetics of the n-C3H7I unimolecular decomposition and the thermodynamic properties of n-C3H7I and i-C3H7I molecules, by providing combined experimental and theoretical data on the rate constant for reaction of n-C3H7I + Ar ⇌ n-C3H7 + I + Ar, as well as thermodynamic data for iodopropane isomers, calculated based on the density functional theory. The n-C3H7I dissociation rate constant has been precisely determined in shock-tube experiments by applying atomic resonance absorption spectrometry (ARAS) at the resonance transition wavelength of atomic iodine (183.0 nm) in a temperature range from 830 to 1230 K at a pressure of 3–4 bar. The resulting expression is presented in the Arrhenius form: k1st = 1.17 × 1013exp(−191.4 kJ mol−1/RT) (s−1). Theoretical RRKM/ME calculation of the temperature- and pressure-dependent rate constant and channel branching ratio have been based on quantum chemical calculations and were performed over a wide range of thermodynamic conditions (T = 300–2000 K, p = 10−4 to 102 bar). Additionally, the thermochemistry of the reactions of n-C3H7I dissociation and isomerization has been calculated on B3LYP/cc-pVTZ-PP level of theory. Thermodynamic data, which are provided in NASA polynomial format, are in a better agreement with the available experimental data and previous theoretical estimates.
Acknowledgments
The authors express their deep gratitude to Professor Alexander Mebel (Florida International University) for valuable comments and help in mastering theoretical calculations.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request fron the corresponding author.
References
1. Drakon, A. V., Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. High Temp. 2017, 55, 239–245; https://doi.org/10.1134/s0018151x17020043.Search in Google Scholar
2. Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. J. Phys.: Conf. Ser. 2018, 946, 012070; https://doi.org/10.1088/1742-6596/946/1/012070.Search in Google Scholar
3. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. J. Phys. D: Appl. Phys. 2018, 51, 184004; https://doi.org/10.1088/1361-6463/aab8e5.Search in Google Scholar
4. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Loukhovitski, B. I., Sharipov, A. S., Yatsenko, P. I. Int. J. Chem. Kinet. 2019, 51, 206–214; https://doi.org/10.1002/kin.21244.Search in Google Scholar
5. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Loukhovitski, B. I., Sharipov, A. S., Yatsenko, P. I. J. Phys.: Conf. Ser. 2020, 1556, 012037; https://doi.org/10.1088/1742-6596/1556/1/012037.Search in Google Scholar
6. Bentz, T., Szori, M., Viskolcz, B., Olzmann, M. Z. Phys. Chem. 2011, 225, 1117–1128; https://doi.org/10.1524/zpch.2011.0178.Search in Google Scholar
7. Ackermann, L., Hippler, H., Pagsberg, P., Reihs, C., Troe, J. J. Phys. Chem. 1990, 94, 5247; https://doi.org/10.1021/j100376a015.Search in Google Scholar
8. Herzler, J., Frank, P. Ber. Bunsenges. Phys. Chem. 1992, 96, 1333; https://doi.org/10.1002/bbpc.19920961003.Search in Google Scholar
9. Takahashi, K., Yamamoto, O., Inomata, T., Kogoma, M. Int. J. Chem. Kinet. 2007, 39, 97; https://doi.org/10.1002/kin.20225.Search in Google Scholar
10. Kunz, A., Roth, P. Ber. Bunsenges. Phys. Chem. 1998, 102, 73; https://doi.org/10.1002/bbpc.19981020109.Search in Google Scholar
11. Peukert, S., Herzler, J., Mu, F., Schulz, C. Int. J. Chem. Kinet. 2018, 50, 57–72; https://doi.org/10.1002/kin.21140.Search in Google Scholar
12. Peukert, S., Yatsenko, P., Mu, F., Schulz, C. J. Phys. Chem. A 2018, 122, 5289–5298; https://doi.org/10.1021/acs.jpca.8b03160.Search in Google Scholar PubMed
13. Jones, J. L., Ogg, R. A. J. Am. Chem. Soc. 1937, 59, 1939–1942; https://doi.org/10.1021/ja01289a042.Search in Google Scholar
14. Kumaran, S. S., Su, M. C., Michael, I. V. Int. J. Chem. Kinet. 1997, 29, 535–543; https://doi.org/10.1002/(sici)1097-4601(1997)29:7<535::aid-kin8>3.0.co;2-v.Search in Google Scholar
15. Yang, X. L., Goldsmith, C. F., Tranter, R. S. J. Phys. Chem. A 2009, 113, 8307–8317; https://doi.org/10.1021/jp903336u.Search in Google Scholar PubMed
16. Goos, E., Burcat, A., Ruscic, B. Third Millennium Ideal Gas and Condensed Phase Thermochemical Database For Combustion With Updates from Active Thermochemical Tables; Chemistry Division, Argonne National Laboratory: Argonne, Illinois (USA), 2005.10.2172/925269Search in Google Scholar
17. Yang, X. L., Tranter, R. S. Int. J. Chem. Kinet. 2012, 44, 433–443; https://doi.org/10.1002/kin.20601.Search in Google Scholar
18. Varga, T., Zsely, I. G., Turanyi, T., Bentz, T., Olzmann, M. Int. J. Chem. Kinet. 2014, 46, 295–304; https://doi.org/10.1002/kin.20829.Search in Google Scholar
19. Butler, E. T., Polanyi, M. Trans. Faraday Soc. 1943, 39, 19; https://doi.org/10.1039/tf9433900019.Search in Google Scholar
20. Tsang, W.. J. Chem. Phys. 1964, 41, 2487–2494; https://doi.org/10.1063/1.1726292.Search in Google Scholar
21. Hippler, H., Riedl, A., Troe, J., Willner, J. Z. Phys. Chem. 1991, 171, 161–177; https://doi.org/10.1524/zpch.1991.171.part_2.161.Search in Google Scholar
22. Awan, I. A., Burgess, D. R., Manion, J. A. J. Phys. Chem. A 2012, 116, 2895–2910; https://doi.org/10.1021/jp2115302.Search in Google Scholar PubMed
23. Pedley, J. B., Naylor, R. D., Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd ed.; Chapman & Hall: New York, 1986.10.1007/978-94-009-4099-4Search in Google Scholar
24. Stein, S. E. NIST Structure and Properties (Version 2.0); National Institute of Standards and Technology: Gaithersburg (USA), 1994.Search in Google Scholar
25. Denoosv, E. T., Tumanov, V. E. Russ. Chem. Rev. 2005, 74, 825–858; https://doi.org/10.1070/rc2005v074n09abeh001177.Search in Google Scholar
26. Trotman-Dickenson, A. F. Gas Kinetics; Butterworths Scientific Publications: Butterworths, London, 1955.Search in Google Scholar
27. Benson, S. W., Amano, A. J. Chem. Phys. 1962, 36, 3464; https://doi.org/10.1063/1.1732481.Search in Google Scholar
28. Furuyama, S., Golden, D. M., Benson, S. W. J. Chem. Thermodyn. 1969, 1, 363–375; https://doi.org/10.1016/0021-9614(69)90066-4.Search in Google Scholar
29. Andreevskii, D. N., Rozhnov, A. M. Petrol Chem. 1962, 2, 378.Search in Google Scholar
30. Butler, E. T., Mandel, E., Polanyi, M. Trans. Faraday Soc. 1945, 41, 298–306; https://doi.org/10.1039/tf9454100298.Search in Google Scholar
31. Sullivan, J.. J. Phys. Chem. 1961, 65, 722; https://doi.org/10.1021/j100823a005.Search in Google Scholar
32. Benson, W. J. Chem. Phys. 1963, 38, 1945; https://doi.org/10.1063/1.1733901.Search in Google Scholar
33. Teranishi, H., Benson, W. J. Chem. Phys. 1964, 40, 2946; https://doi.org/10.1063/1.1724930.Search in Google Scholar
34. Holmes, J. L., Maccoll, A. J. Chem. Soc. 1963, 1127, 5919; https://doi.org/10.1039/jr9630005919.Search in Google Scholar
35. Choudhary, G., Holmes, J. L. J. Chem. Soc. B 1968, 1265–1270; https://doi.org/10.1039/j29680001265.Search in Google Scholar
36. King, K. D., Golden, D. M., Spokes, G. N., Benson, S. W. Int. J. Chem. Kinet. 1971, 3, 411–426; https://doi.org/10.1002/kin.550030504.Search in Google Scholar
37. Miyoshi, A., Yamauchi, N., Kosaka, K., Koshi, M., Matsui, H. J. Phys. Chem. A 1999, 103, 46–53; https://doi.org/10.1021/jp982915u.Search in Google Scholar
38. Kramida, A., Ralchenko, Y., Reader, J. and NIST ASD Team (2014). NIST Atomic Spectra Database (version 5.2); National Institute of Standards and Technology: Gaithersburg (USA), 2015.Search in Google Scholar
39. Weber, K. H., Lemieux, J. M., Zhang, J. S. J. Phys. Chem. A 2009, 113, 583–591; https://doi.org/10.1021/jp808155a.Search in Google Scholar PubMed
40. McGrath, M. P., Rowland, F. S. J. Phys. Chem. A 2002, 106, 8191; https://doi.org/10.1021/jp020986u.Search in Google Scholar
41. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, H., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09 (Revision B.01); Gaussian, Inc.: Wallingford (England), 2009.Search in Google Scholar
42. Becke, A. D. J. Chem. Phys. 1993, 98, 5648; https://doi.org/10.1063/1.464913.Search in Google Scholar
43. Lee, C., Yang, W., Parr, R. G. Phys. Rev. 1988, 37, 785; https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed
44. Peterson, K. A., Shepler, B. C., Figgen, D., Stoll, H. J. Phys. Chem. A 2006, 110, 13877–13883; https://doi.org/10.1021/jp065887l.Search in Google Scholar PubMed
45. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D., Windus, T. L. J. Chem. Inf. Model. 2019, 59, 4814–4820; https://doi.org/10.1021/acs.jcim.9b00725.Search in Google Scholar PubMed
46. Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A. J. Chem. Phys. 1980, 72, 650–654; https://doi.org/10.1063/1.438955.Search in Google Scholar
47. Johnson, R. D., Ed. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database (release 21, number 101); National Institute of Standards and Technology: Gaithersburg (USA), 2020.Search in Google Scholar
48. Canneaux, S., Bohr, F., Henon, E. J. Comput. Chem. 2014, 35, 82–93; https://doi.org/10.1002/jcc.23470.Search in Google Scholar PubMed
49. Miyoshi, A. GPOP Software (Revision 2013.07.15m5); Free Software Foundation, Inc.: Boston, Massachusetts (USA), 2013.Search in Google Scholar
50. Ochterski, J. W. Thermochemistry in Gaussian (Release 2009); Gaussian, Inc.: Wallingford (England), 2009.Search in Google Scholar
51. Klippenstein, S. J., Miller, J. A. J. Phys. Chem. A 2002, 106, 9267–9277; https://doi.org/10.1021/jp021175t.Search in Google Scholar
52. Miller, J. A., Klippenstein, S. J. J. Phys. Chem. A 2006, 110, 10528–10544; https://doi.org/10.1021/jp062693x.Search in Google Scholar PubMed
53. Cambi, R., Cappelletti, D., Liuti, G., Pirani, F. J. Chem. Phys. 1991, 95, 1852–1862.10.1063/1.461035Search in Google Scholar
54. Silva, C. S., Lima, F. C. A. Comput. Theor. Chem. 2023, 1225, 114140.10.1016/j.comptc.2023.114140Search in Google Scholar
55. Cheng, L., Shen, Z., Lu, J., Gao, H., Lu, Z. Chem. Phys. Lett. 2005, 416, 160–164; https://doi.org/10.1016/j.cplett.2005.09.076.Search in Google Scholar
56. Ruscic, B., Pinzon, R. E., Von Laszewski, G., Kodeboyina, D., Burcat, A., Leahy, D., Montoy, D., Wagner, F. A. J. Phys.: Conf. Ser. 2005, 16, 561; https://doi.org/10.1088/1742-6596/16/1/078.Search in Google Scholar
57. Ruscic, B., Bross, D. H. Active Thermochemical Tables of the Thermochemical Network (release 2020, version 1.122p); Argonne National Laboratory: Argonne, Illinois (USA), 2020.Search in Google Scholar
58. Curtiss, L. A., Raghavachari, K., Redfern, P. C., Pople, J. A. J. Chem. Phys. 1997, 106, 1063; https://doi.org/10.1063/1.473182.Search in Google Scholar
59. Chase, M. W. NIST-JANAF Themochemical Tables, Monograph 9, 4th ed.; American Chemical Society: Washington, DC, 1998.Search in Google Scholar
60. Brand, W. A., Baer, T., Klots, C. E. Chem. Phys. 1983, 76, 111; https://doi.org/10.1016/0301-0104(83)85055-1.Search in Google Scholar
61. Rosenstock, H. M., Buff, R., Ferreira, M. A. A., Lias, S. G., Parr, A. C., Stockbauer, R. L., Holmes, J. L. J. Am. Chem. Soc. 1982, 104, 2337; https://doi.org/10.1021/ja00373a001.Search in Google Scholar
62. Zeleznik, F. J., Gordon, S. Simultaneous Least Square Approximation of a Function and its First Integrals, with Application to Thermodynamic Data, NASA Technical Note D-767, 1961.Search in Google Scholar
63. Lide, D. R. Handbook of Chemistry and Physics, 84th ed.; CRC Press LLC: Boca Raton, 2003.Search in Google Scholar
64. Kee, R. J., Rupley, F., Miller, J. A., Coltrin, M., Grcar, J. F., Meeks, E., Moffat, H., Lutz, A., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G., Larson, R., Mitchell, R., Petzold, L., Reynolds, W., Caracotsios, M., Stewart, W., Glarborg, P., Wang, C., McLellan, C., Adigun, O., Houf, W., Chou, C., Miller, S., Ho, P., Young, P., Young, D., Hodgson, D., Petrova, M., Puduppakkam, K. CHEMKIN-PRO, release (15101); Reaction Design, Inc.: San Diego (USA), 2010.Search in Google Scholar
65. Kumaran, S. S., Su, M.-C., Lim, K. P., Michael, J. V. Proc. Combust. Inst. 1996, 26, 605; https://doi.org/10.1016/s0082-0784(96)80266-9.Search in Google Scholar
66. Kumaran, S. S., Su, M. C., Michael, J. V. Chem. Phys. Lett. 1997, 269, 99–106; https://doi.org/10.1016/s0009-2614(97)00256-x.Search in Google Scholar
67. Yang, J.-H., Conway, D. C. J. Chem. Phys. 1965, 43, 1296; https://doi.org/10.1063/1.1696918.Search in Google Scholar
68. Shilov, A. E., Sabirova, R. D. Kinet. Catal. 1964, 5, 32–39.Search in Google Scholar
69. Lin, C. C., Chen, W. Y., Matsui, H., Wang, N. S. J. Chem. Phys. 2017, 147, 064304; https://doi.org/10.1063/1.4997739.Search in Google Scholar PubMed
70. Tranter, R. S., Klippenstein, S. J., Harding, L. B., Giri, B. R., Yang, X. L., Kiefer, J. H. J. Phys. Chem. A 2010, 114, 8240–8261; https://doi.org/10.1021/jp1031064.Search in Google Scholar PubMed
71. Robaugh, D., Tsang, W. J. Phys. Chem. 1986, 90, 5363–5367; https://doi.org/10.1021/j100412a094.Search in Google Scholar
72. Tedeev, R. S., Dymov, B. P., Skorobogatov, G. A. Vestn. Leningr. Univ. 1989, 1, 37–42.Search in Google Scholar
73. Skorobogatov, G. A., Dymov, B. P., Khripun, V. K. Kinet. Catal. 1991, 32, 220–227.Search in Google Scholar
74. Skorobogatov, G. A., Dymov, B. P., Nedozrelova, I. V. J. Org. Chem. (Zh. Org. Khim.) 1994, 64, 956–965.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0385).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- Synthetic methodologies to access bioactive bis-coumarin scaffold: a recent progress
- Removal of CO in flue gas by catalytic oxidation: a review
- Original Papers
- Adsorption and visible light driven photocatalytic degradation of Malachite Green and Methylene Blue dye in wastewater using magnetized copper metal organic framework
- Removal of chemicals from effluent using photobioreactor technology to improve environmental and health impacts
- Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I
- Microwave-accelerated heating technique in fabrication of silver nanoparticles using propolis extract: optimization and characterization
- In vitro study on the inflammatory response of chitosan nanoparticles as a potential siRNA carrier targeting towards osteosarcoma cells
- Formulation and development of topical iron oxide nanoemulgel using Punica granatum extract and in vitro evaluation of anti-inflammatory potential in rheumatoid arthritis
Articles in the same Issue
- Frontmatter
- Review Articles
- Synthetic methodologies to access bioactive bis-coumarin scaffold: a recent progress
- Removal of CO in flue gas by catalytic oxidation: a review
- Original Papers
- Adsorption and visible light driven photocatalytic degradation of Malachite Green and Methylene Blue dye in wastewater using magnetized copper metal organic framework
- Removal of chemicals from effluent using photobioreactor technology to improve environmental and health impacts
- Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I
- Microwave-accelerated heating technique in fabrication of silver nanoparticles using propolis extract: optimization and characterization
- In vitro study on the inflammatory response of chitosan nanoparticles as a potential siRNA carrier targeting towards osteosarcoma cells
- Formulation and development of topical iron oxide nanoemulgel using Punica granatum extract and in vitro evaluation of anti-inflammatory potential in rheumatoid arthritis