Home Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I
Article
Licensed
Unlicensed Requires Authentication

Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I

  • Nikita Bystrov , Alexander Emelianov , Alexander Eremin and Pavel Yatsenko ORCID logo EMAIL logo
Published/Copyright: January 25, 2024

Abstract

The present work expands previous studies on the kinetics of the n-C3H7I unimolecular decomposition and the thermodynamic properties of n-C3H7I and i-C3H7I molecules, by providing combined experimental and theoretical data on the rate constant for reaction of n-C3H7I + Ar ⇌ n-C3H7 + I + Ar, as well as thermodynamic data for iodopropane isomers, calculated based on the density functional theory. The n-C3H7I dissociation rate constant has been precisely determined in shock-tube experiments by applying atomic resonance absorption spectrometry (ARAS) at the resonance transition wavelength of atomic iodine (183.0 nm) in a temperature range from 830 to 1230 K at a pressure of 3–4 bar. The resulting expression is presented in the Arrhenius form: k1st = 1.17 × 1013exp(−191.4 kJ mol−1/RT) (s−1). Theoretical RRKM/ME calculation of the temperature- and pressure-dependent rate constant and channel branching ratio have been based on quantum chemical calculations and were performed over a wide range of thermodynamic conditions (T = 300–2000 K, p = 10−4 to 102 bar). Additionally, the thermochemistry of the reactions of n-C3H7I dissociation and isomerization has been calculated on B3LYP/cc-pVTZ-PP level of theory. Thermodynamic data, which are provided in NASA polynomial format, are in a better agreement with the available experimental data and previous theoretical estimates.


Corresponding author: Pavel Yatsenko, Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow 125412, Russia, E-mail:

Acknowledgments

The authors express their deep gratitude to Professor Alexander Mebel (Florida International University) for valuable comments and help in mastering theoretical calculations.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request fron the corresponding author.

References

1. Drakon, A. V., Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. High Temp. 2017, 55, 239–245; https://doi.org/10.1134/s0018151x17020043.Search in Google Scholar

2. Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. J. Phys.: Conf. Ser. 2018, 946, 012070; https://doi.org/10.1088/1742-6596/946/1/012070.Search in Google Scholar

3. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Yatsenko, P. I. J. Phys. D: Appl. Phys. 2018, 51, 184004; https://doi.org/10.1088/1361-6463/aab8e5.Search in Google Scholar

4. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Loukhovitski, B. I., Sharipov, A. S., Yatsenko, P. I. Int. J. Chem. Kinet. 2019, 51, 206–214; https://doi.org/10.1002/kin.21244.Search in Google Scholar

5. Bystrov, N. S., Emelianov, A. V., Eremin, A. V., Loukhovitski, B. I., Sharipov, A. S., Yatsenko, P. I. J. Phys.: Conf. Ser. 2020, 1556, 012037; https://doi.org/10.1088/1742-6596/1556/1/012037.Search in Google Scholar

6. Bentz, T., Szori, M., Viskolcz, B., Olzmann, M. Z. Phys. Chem. 2011, 225, 1117–1128; https://doi.org/10.1524/zpch.2011.0178.Search in Google Scholar

7. Ackermann, L., Hippler, H., Pagsberg, P., Reihs, C., Troe, J. J. Phys. Chem. 1990, 94, 5247; https://doi.org/10.1021/j100376a015.Search in Google Scholar

8. Herzler, J., Frank, P. Ber. Bunsenges. Phys. Chem. 1992, 96, 1333; https://doi.org/10.1002/bbpc.19920961003.Search in Google Scholar

9. Takahashi, K., Yamamoto, O., Inomata, T., Kogoma, M. Int. J. Chem. Kinet. 2007, 39, 97; https://doi.org/10.1002/kin.20225.Search in Google Scholar

10. Kunz, A., Roth, P. Ber. Bunsenges. Phys. Chem. 1998, 102, 73; https://doi.org/10.1002/bbpc.19981020109.Search in Google Scholar

11. Peukert, S., Herzler, J., Mu, F., Schulz, C. Int. J. Chem. Kinet. 2018, 50, 57–72; https://doi.org/10.1002/kin.21140.Search in Google Scholar

12. Peukert, S., Yatsenko, P., Mu, F., Schulz, C. J. Phys. Chem. A 2018, 122, 5289–5298; https://doi.org/10.1021/acs.jpca.8b03160.Search in Google Scholar PubMed

13. Jones, J. L., Ogg, R. A. J. Am. Chem. Soc. 1937, 59, 1939–1942; https://doi.org/10.1021/ja01289a042.Search in Google Scholar

14. Kumaran, S. S., Su, M. C., Michael, I. V. Int. J. Chem. Kinet. 1997, 29, 535–543; https://doi.org/10.1002/(sici)1097-4601(1997)29:7<535::aid-kin8>3.0.co;2-v.Search in Google Scholar

15. Yang, X. L., Goldsmith, C. F., Tranter, R. S. J. Phys. Chem. A 2009, 113, 8307–8317; https://doi.org/10.1021/jp903336u.Search in Google Scholar PubMed

16. Goos, E., Burcat, A., Ruscic, B. Third Millennium Ideal Gas and Condensed Phase Thermochemical Database For Combustion With Updates from Active Thermochemical Tables; Chemistry Division, Argonne National Laboratory: Argonne, Illinois (USA), 2005.10.2172/925269Search in Google Scholar

17. Yang, X. L., Tranter, R. S. Int. J. Chem. Kinet. 2012, 44, 433–443; https://doi.org/10.1002/kin.20601.Search in Google Scholar

18. Varga, T., Zsely, I. G., Turanyi, T., Bentz, T., Olzmann, M. Int. J. Chem. Kinet. 2014, 46, 295–304; https://doi.org/10.1002/kin.20829.Search in Google Scholar

19. Butler, E. T., Polanyi, M. Trans. Faraday Soc. 1943, 39, 19; https://doi.org/10.1039/tf9433900019.Search in Google Scholar

20. Tsang, W.. J. Chem. Phys. 1964, 41, 2487–2494; https://doi.org/10.1063/1.1726292.Search in Google Scholar

21. Hippler, H., Riedl, A., Troe, J., Willner, J. Z. Phys. Chem. 1991, 171, 161–177; https://doi.org/10.1524/zpch.1991.171.part_2.161.Search in Google Scholar

22. Awan, I. A., Burgess, D. R., Manion, J. A. J. Phys. Chem. A 2012, 116, 2895–2910; https://doi.org/10.1021/jp2115302.Search in Google Scholar PubMed

23. Pedley, J. B., Naylor, R. D., Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd ed.; Chapman & Hall: New York, 1986.10.1007/978-94-009-4099-4Search in Google Scholar

24. Stein, S. E. NIST Structure and Properties (Version 2.0); National Institute of Standards and Technology: Gaithersburg (USA), 1994.Search in Google Scholar

25. Denoosv, E. T., Tumanov, V. E. Russ. Chem. Rev. 2005, 74, 825–858; https://doi.org/10.1070/rc2005v074n09abeh001177.Search in Google Scholar

26. Trotman-Dickenson, A. F. Gas Kinetics; Butterworths Scientific Publications: Butterworths, London, 1955.Search in Google Scholar

27. Benson, S. W., Amano, A. J. Chem. Phys. 1962, 36, 3464; https://doi.org/10.1063/1.1732481.Search in Google Scholar

28. Furuyama, S., Golden, D. M., Benson, S. W. J. Chem. Thermodyn. 1969, 1, 363–375; https://doi.org/10.1016/0021-9614(69)90066-4.Search in Google Scholar

29. Andreevskii, D. N., Rozhnov, A. M. Petrol Chem. 1962, 2, 378.Search in Google Scholar

30. Butler, E. T., Mandel, E., Polanyi, M. Trans. Faraday Soc. 1945, 41, 298–306; https://doi.org/10.1039/tf9454100298.Search in Google Scholar

31. Sullivan, J.. J. Phys. Chem. 1961, 65, 722; https://doi.org/10.1021/j100823a005.Search in Google Scholar

32. Benson, W. J. Chem. Phys. 1963, 38, 1945; https://doi.org/10.1063/1.1733901.Search in Google Scholar

33. Teranishi, H., Benson, W. J. Chem. Phys. 1964, 40, 2946; https://doi.org/10.1063/1.1724930.Search in Google Scholar

34. Holmes, J. L., Maccoll, A. J. Chem. Soc. 1963, 1127, 5919; https://doi.org/10.1039/jr9630005919.Search in Google Scholar

35. Choudhary, G., Holmes, J. L. J. Chem. Soc. B 1968, 1265–1270; https://doi.org/10.1039/j29680001265.Search in Google Scholar

36. King, K. D., Golden, D. M., Spokes, G. N., Benson, S. W. Int. J. Chem. Kinet. 1971, 3, 411–426; https://doi.org/10.1002/kin.550030504.Search in Google Scholar

37. Miyoshi, A., Yamauchi, N., Kosaka, K., Koshi, M., Matsui, H. J. Phys. Chem. A 1999, 103, 46–53; https://doi.org/10.1021/jp982915u.Search in Google Scholar

38. Kramida, A., Ralchenko, Y., Reader, J. and NIST ASD Team (2014). NIST Atomic Spectra Database (version 5.2); National Institute of Standards and Technology: Gaithersburg (USA), 2015.Search in Google Scholar

39. Weber, K. H., Lemieux, J. M., Zhang, J. S. J. Phys. Chem. A 2009, 113, 583–591; https://doi.org/10.1021/jp808155a.Search in Google Scholar PubMed

40. McGrath, M. P., Rowland, F. S. J. Phys. Chem. A 2002, 106, 8191; https://doi.org/10.1021/jp020986u.Search in Google Scholar

41. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, H., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09 (Revision B.01); Gaussian, Inc.: Wallingford (England), 2009.Search in Google Scholar

42. Becke, A. D. J. Chem. Phys. 1993, 98, 5648; https://doi.org/10.1063/1.464913.Search in Google Scholar

43. Lee, C., Yang, W., Parr, R. G. Phys. Rev. 1988, 37, 785; https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed

44. Peterson, K. A., Shepler, B. C., Figgen, D., Stoll, H. J. Phys. Chem. A 2006, 110, 13877–13883; https://doi.org/10.1021/jp065887l.Search in Google Scholar PubMed

45. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D., Windus, T. L. J. Chem. Inf. Model. 2019, 59, 4814–4820; https://doi.org/10.1021/acs.jcim.9b00725.Search in Google Scholar PubMed

46. Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A. J. Chem. Phys. 1980, 72, 650–654; https://doi.org/10.1063/1.438955.Search in Google Scholar

47. Johnson, R. D., Ed. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database (release 21, number 101); National Institute of Standards and Technology: Gaithersburg (USA), 2020.Search in Google Scholar

48. Canneaux, S., Bohr, F., Henon, E. J. Comput. Chem. 2014, 35, 82–93; https://doi.org/10.1002/jcc.23470.Search in Google Scholar PubMed

49. Miyoshi, A. GPOP Software (Revision 2013.07.15m5); Free Software Foundation, Inc.: Boston, Massachusetts (USA), 2013.Search in Google Scholar

50. Ochterski, J. W. Thermochemistry in Gaussian (Release 2009); Gaussian, Inc.: Wallingford (England), 2009.Search in Google Scholar

51. Klippenstein, S. J., Miller, J. A. J. Phys. Chem. A 2002, 106, 9267–9277; https://doi.org/10.1021/jp021175t.Search in Google Scholar

52. Miller, J. A., Klippenstein, S. J. J. Phys. Chem. A 2006, 110, 10528–10544; https://doi.org/10.1021/jp062693x.Search in Google Scholar PubMed

53. Cambi, R., Cappelletti, D., Liuti, G., Pirani, F. J. Chem. Phys. 1991, 95, 1852–1862.10.1063/1.461035Search in Google Scholar

54. Silva, C. S., Lima, F. C. A. Comput. Theor. Chem. 2023, 1225, 114140.10.1016/j.comptc.2023.114140Search in Google Scholar

55. Cheng, L., Shen, Z., Lu, J., Gao, H., Lu, Z. Chem. Phys. Lett. 2005, 416, 160–164; https://doi.org/10.1016/j.cplett.2005.09.076.Search in Google Scholar

56. Ruscic, B., Pinzon, R. E., Von Laszewski, G., Kodeboyina, D., Burcat, A., Leahy, D., Montoy, D., Wagner, F. A. J. Phys.: Conf. Ser. 2005, 16, 561; https://doi.org/10.1088/1742-6596/16/1/078.Search in Google Scholar

57. Ruscic, B., Bross, D. H. Active Thermochemical Tables of the Thermochemical Network (release 2020, version 1.122p); Argonne National Laboratory: Argonne, Illinois (USA), 2020.Search in Google Scholar

58. Curtiss, L. A., Raghavachari, K., Redfern, P. C., Pople, J. A. J. Chem. Phys. 1997, 106, 1063; https://doi.org/10.1063/1.473182.Search in Google Scholar

59. Chase, M. W. NIST-JANAF Themochemical Tables, Monograph 9, 4th ed.; American Chemical Society: Washington, DC, 1998.Search in Google Scholar

60. Brand, W. A., Baer, T., Klots, C. E. Chem. Phys. 1983, 76, 111; https://doi.org/10.1016/0301-0104(83)85055-1.Search in Google Scholar

61. Rosenstock, H. M., Buff, R., Ferreira, M. A. A., Lias, S. G., Parr, A. C., Stockbauer, R. L., Holmes, J. L. J. Am. Chem. Soc. 1982, 104, 2337; https://doi.org/10.1021/ja00373a001.Search in Google Scholar

62. Zeleznik, F. J., Gordon, S. Simultaneous Least Square Approximation of a Function and its First Integrals, with Application to Thermodynamic Data, NASA Technical Note D-767, 1961.Search in Google Scholar

63. Lide, D. R. Handbook of Chemistry and Physics, 84th ed.; CRC Press LLC: Boca Raton, 2003.Search in Google Scholar

64. Kee, R. J., Rupley, F., Miller, J. A., Coltrin, M., Grcar, J. F., Meeks, E., Moffat, H., Lutz, A., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G., Larson, R., Mitchell, R., Petzold, L., Reynolds, W., Caracotsios, M., Stewart, W., Glarborg, P., Wang, C., McLellan, C., Adigun, O., Houf, W., Chou, C., Miller, S., Ho, P., Young, P., Young, D., Hodgson, D., Petrova, M., Puduppakkam, K. CHEMKIN-PRO, release (15101); Reaction Design, Inc.: San Diego (USA), 2010.Search in Google Scholar

65. Kumaran, S. S., Su, M.-C., Lim, K. P., Michael, J. V. Proc. Combust. Inst. 1996, 26, 605; https://doi.org/10.1016/s0082-0784(96)80266-9.Search in Google Scholar

66. Kumaran, S. S., Su, M. C., Michael, J. V. Chem. Phys. Lett. 1997, 269, 99–106; https://doi.org/10.1016/s0009-2614(97)00256-x.Search in Google Scholar

67. Yang, J.-H., Conway, D. C. J. Chem. Phys. 1965, 43, 1296; https://doi.org/10.1063/1.1696918.Search in Google Scholar

68. Shilov, A. E., Sabirova, R. D. Kinet. Catal. 1964, 5, 32–39.Search in Google Scholar

69. Lin, C. C., Chen, W. Y., Matsui, H., Wang, N. S. J. Chem. Phys. 2017, 147, 064304; https://doi.org/10.1063/1.4997739.Search in Google Scholar PubMed

70. Tranter, R. S., Klippenstein, S. J., Harding, L. B., Giri, B. R., Yang, X. L., Kiefer, J. H. J. Phys. Chem. A 2010, 114, 8240–8261; https://doi.org/10.1021/jp1031064.Search in Google Scholar PubMed

71. Robaugh, D., Tsang, W. J. Phys. Chem. 1986, 90, 5363–5367; https://doi.org/10.1021/j100412a094.Search in Google Scholar

72. Tedeev, R. S., Dymov, B. P., Skorobogatov, G. A. Vestn. Leningr. Univ. 1989, 1, 37–42.Search in Google Scholar

73. Skorobogatov, G. A., Dymov, B. P., Khripun, V. K. Kinet. Catal. 1991, 32, 220–227.Search in Google Scholar

74. Skorobogatov, G. A., Dymov, B. P., Nedozrelova, I. V. J. Org. Chem. (Zh. Org. Khim.) 1994, 64, 956–965.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0385).


Received: 2023-10-10
Accepted: 2024-01-03
Published Online: 2024-01-25
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0385/html
Scroll to top button