Insights into the corrosion resistance of a novel quinoline derivative on Q235 steel in acidizing medium under hydrodynamic condition: experimental and surface study
-
Ambrish Singh
, Kashif R. Ansari
, Ismat H. Ali
, Muhammad Younas , Abdullah K. Alanazi und Yuanhua Lin
Abstract
The study concentrated on the fabrication of an environmentally friendly inhibitor, namely ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate derivative of quinoline (MQC), in a single step, and assessed its inhibiting property in highly acidic fluid (15 % HCl) for protecting Q235 steel at 1500 rpm rotation speed. Weight reduction, Potentiodynamic polarization, and electrochemical impedance spectroscopy were utilized in the study to investigate the inhibiting impact of MQC. The estimated findings corroborated the inhibiting data of 93.54 and 98.38 % at 308 K with 100 mg/L/only MQC and MQC + KI/75 mg/L + 0.5 mM, respectively, and the impact of temperature upon the inhibitory capability possessed little impact at larger dose quantities. According to the electrochemical outcomes, the MQC is a mixed-type corrosion inhibitor. The findings of the SEM, EDX, and AFM examinations demonstrated that the MQC established a barrier over the surface of Q235 steel by adsorption, changing the hydrophilic and hydrophobic attributes of the Q235 steel surface. An additional XPS assessment demonstrated MQC molecule adsorption on the Q235 steel surface. Density functional theory (DFT) and molecular dynamic simulations (MD) calculations were further performed to justify the experimental results.
Acknowledgments
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a research group program under grant number R.G.P. 2/271/44.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors states no conflict of interest.
-
Research funding: The Research was funded by grant number R.G.P. 2/271/44.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Paul, P. K., Yadav, M. Investigation on Corrosion Inhibition and Adsorption Mechanism of Triazine-Thiourea Derivatives at Mild Steel/HCl Solution Interface: Electrochemical, XPS, DFT and Monte Carlo Simulation Approach. Electroanal. Chem. 2020, 877, 114599. https://doi.org/10.1016/j.jelechem.2020.114599.Suche in Google Scholar
2. Kumar, H., Dhanda, T. Cyclohexylamine an Effective Corrosion Inhibitor for Mild Steel in 0.1 N H2SO4: Experimental and Theoretical (Molecular Dynamics Simulation and FMO) Study. J. Mol. Liq. 2021, 327, 114847. https://doi.org/10.1016/j.molliq.2020.114847.Suche in Google Scholar
3. Hegazy, M. A., El-Tabei, A. S., Bedair, A. H., Sadeq, M. A. Synthesis and Inhibitive Performance of Novel Cationic and Gemini Surfactants on Carbon Steel Corrosion in 0.5 M H2SO4 Solution. RSC Adv. 2015, 5, 64633–64650. https://doi.10.1039/c5ra06473b.10.1039/C5RA06473BSuche in Google Scholar
4. Jeeva, M., Prabhu, G. V., Boobalan, M. S., Rajesh, C. M. Interactions and Inhibition Effect of Urea-Derived Mannich Bases on a Mild Steel Surface in HCl. J. Phys. Chem. C 2015, 119 (38), 22025–22043; https://doi.org/10.1021/acs.jpcc.5b05788. https://doi.10.1021/acs.jpcc.5b05788.Suche in Google Scholar
5. Murthy, R., Gupta, P., Sundaresan, C. N. Theoretical and Electrochemical Evaluation of 2-Thioureidobenzheteroazoles as Potent Corrosion Inhibitors for Mild Steel in 2 M HCl Solution. J. Mol. Liq. 2020, 319, 114081. https://doi.org/10.1016/j.molliq.2020.114081.Suche in Google Scholar
6. Golchinvafa, A., Mousavi Anijdan, S. H., Sabzi, M., Sadeghi, M. The Effect of Natural Inhibitor Concentration of Fumaria Officinalis and Temperature on Corrosion Protection Mechanism in API X80 Pipeline Steel in 1 M H2SO4 Solution. J. Int. J. Pres. Vessels Pip. 2020, 188, 104241; https://doi.org/10.1016/j.ijpvp.2020.104241.Suche in Google Scholar
7. Kalyn, T., Poberzhny, L., Popovych, P., Rudiak, Y., Korol, O., Poberezhna, L. Evaluation of the Green Inhibitor Effect on the Corrosion of Pipeline Steel in NS4 Medium. J. Procedia Struct. Integr. 2022, 36, 313–317; https://doi.org/10.1016/j.prostr.2022.01.040.Suche in Google Scholar
8. Kalaiselvi, P., Chellammal, S., Palanichamy, S., Subramanian, G. Artemisia Pallens as Corrosion Inhibitor for Mild Steel in HCl Medium. Mater. Chem. Phys. 2010, 120, 643–648; https://doi.org/10.1016/j.matchemphys.2009.12.015.Suche in Google Scholar
9. Fakhry, H., El Faydy, M., Benhiba, F., Laabaissi, T., Bouassiria, M., Allali, M., Lakhrissi, B., Oudda, H., Guenbour, A., Warad, I., Zarrouk, A. A Newly Synthesized Quinoline Derivative as Corrosion Inhibitor for Mild Steel in Molar Acid Medium: Characterization (SEM/EDS), Experimental and Theoretical Approach. Colloids. Surf. A Physicochem. Eng. Asp. Colloids. 2021, 610, 125746; https://doi.org/10.1016/j.colsurfa.2020.125746.Suche in Google Scholar
10. Ehsani, A., Mahjani, M. G., Moshrefi, R., Mostaanzadeh, H., Shayeh, J. S. Electrochemical and DFT Study on the Inhibition of 316L Stainless Steel Corrosion in Acidic Medium by 1-(4-Nitrophenyl)-5-Amino-1h-Tetrazole. RSC Adv. 2014, 4, 20031–20037. https://doi.org/10.1039/C4RA01029A.Suche in Google Scholar
11. Fernandes, C. M., Alvarez, L. X., dos Santos, N. E., Maldonado Barrios, A. C., Ponzio, E. A. Green Synthesis of 1-Benzyl-4-Phenyl-1h-1,2,3-Triazole, Its Application as Corrosion Inhibitor for Mild Steel in Acidic Medium and New Approach of Classical Electrochemical Analyses. Corros. Sci. 2019, 149, 185–194. https://doi.10.1016/j.corsci.2019.01.019.10.1016/j.corsci.2019.01.019Suche in Google Scholar
12. Lgaz, H., Salghi, R., Ali, I. H. Corrosion Inhibition Behavior of 9-Hydroxyrisperidone as a Green Corrosion Inhibitor for Mild Steel in Hydrochloric Acid: Electrochemical, DFT and MD Simulations Studies. Int. J. Electrochem. Sci. 2018, 13, 250–264; https://doi.org/10.20964/2018.01.26.Suche in Google Scholar
13. Singh, A., Ansari, K. R., Quraishi, M. A., Banerjee, P., Banerjee, P. Corrosion Inhibition and Adsorption of Imidazolium Based Ionic Liquid over P110 Steel Surface in 15% HCl under Static and Dynamic Conditions: Experimental, Surface and Theoretical Analysis. J. Mol. Liq. 2021, 323, 114608; https://doi.org/10.1016/j.molliq.2020.114608.Suche in Google Scholar
14. Singh, A., Ansari, K. R., Ali, I. H., Lin, Y., EL Ibrahimi, B., Bazzi, L. Combination of Experimental, Surface and Computational Insight into the Corrosion Inhibition of Pyrimidine Derivative onto Q235 Steel in Oilfield Acidizing Fluid under Hydrodynamic Condition. J. Mol. Liq. 2022, 353, 118825; https://doi.org/10.1016/j.molliq.2022.118825.Suche in Google Scholar
15. Murmu, M., Saha, S. K., Murmu, N. C., Banerjee, P. Effect of Stereochemical Conformation into the Corrosion Inhibitive Behaviour of Double Azomethine Based Schiff Bases on Mild Steel Surface in 1 Mol L−1 HCl Medium: An Experimental, Density Functional Theory and Molecular Dynamics Simulation Study. Corros. Sci. 2019, 146, 134–151. https://doi.10.1016/j.corsci.2018.10.002.10.1016/j.corsci.2018.10.002Suche in Google Scholar
16. Sadeghi Erami, R., Amirnasr, M., Meghdadi, S., Talebian, M., Farrokhpour, H., Raeissi, K. Carboxamide Derivatives as New Corrosion Inhibitors for Mild Steel Protection in Hydrochloric Acid Solution. Corros. Sci. 2019, 151, 190–197. https://doi.10.1016/j.corsci.2019.02.019.10.1016/j.corsci.2019.02.019Suche in Google Scholar
17. Heydari, H., Talebian, M., Salarvand, Z., Raeissi, K., Bagheri, M., Golozar, M. A. Comparison of Two Schiff Bases Containing O-Methyl and Nitro Substitutes for Corrosion Inhibiting of Mild Steel in 1M HCl Solution. J. Mol. Liq. 2018, 254, 177–187. https://doi.10.1016/j.molliq.2018.01.112.10.1016/j.molliq.2018.01.112Suche in Google Scholar
18. Talebian, M., Raeissi, K., Atapour, M., Fernández-Pérez, B. M., Salarvand, Z., Meghdadi, S., Amirnasr, M., Souto, R. M. Inhibitive Effect of Sodium (E)-4-(4-Nitrobenzylideneamino)benzoate on the Corrosion of Some Metals in Sodium Chloride Solution. Appl. Surf. Sci. 2018, 447, 852–865. https://doi.10.1016/j.apsusc.2018.04.073.10.1016/j.apsusc.2018.04.073Suche in Google Scholar
19. Deyab, M. A. Desalination 2016, 384, 60–67; https://doi.org/10.1016/j.desal.2016.02.001.Suche in Google Scholar
20. El Faydy, M., Benhiba, F., Warad, I., Abousalem, A. S., About, H., Kerroum, Y., Jama, C., Guenbour, A., Lakhrissi, B., Zarrouk, A. Appraisal of Corrosion Inhibiting Ability of New 5-N-((Alkylamino)methyl)quinolin-8-Ol Analogs for C40E Steel in Sulfuric Acid. Int. J. Hydrog. Energy. 2021, 46, 30246–30266. https://doi.org/10.1016/j.ijhydene.2021.06.205.Suche in Google Scholar
21. Keri, R. S., Patil, S. A. Quinoline: A Promising Antitubercular Target. Biomed. Pharmacother. 2014, 68, 1161–1175. https://doi.org/10.1016/j.biopha.2014.10.007.Suche in Google Scholar PubMed
22. Singh, P., Srivastava, V., Quraishi, M. A. Novel Quinoline Derivatives as Green Corrosion Inhibitors for Mild Steel in Acidic Medium: Electrochemical, SEM, AFM, and XPS Studies. J. Mol. Liq. 2016, 216, 164–173. https://doi.org/10.1016/j.molliq.2015.12.086.Suche in Google Scholar
23. Jiang, L., Qiang, Y., Lei, Z., Wang, J., Qin, Z., Xiang, B. Excellent Corrosion Inhibition Performance of Novel Quinoline Derivatives on Mild Steel in HCl Media: Experimental and Computational Investigations. J. Mol. Liq. 2018, 255, 53–63. https://doi.org/10.1016/j.molliq.2018.01.133.Suche in Google Scholar
24. Zhang, W., Ma, R., Liu, H., Liu, Y., Li, S., Niu, L. Electrochemical and Surface Analysis Studies of 2-(quinolin-2-Yl)quinazolin-4(3h)-One as Corrosion Inhibitor for Q235 Steel in Hydrochloric Acid. J. Mol. Liq. 2016, 222, 671–679. https://doi.org/10.1016/j.molliq.2016.07.119.Suche in Google Scholar
25. Saliyan, V. R., Adhikari, A. V. Quinolin-5-ylmethylene-3-{[8-(trifluoromethyl) Quinolin-4-Yl]thio}propanohydrazide as an Effective Inhibitor of Mild Steel Corrosion in HCl Solution. Corros. Sci. 2008, 50, 55–61. https://doi.org/10.1016/j.corsci.2006.06.035.Suche in Google Scholar
26. Carranza, M. S. S., Reyes, Y. I. A., Gonzales, E. C., Arcon, D. P., Franco, F. C. Electrochemical and Quantum Mechanical Investigation of Various Small Molecule Organic Compounds as Corrosion Inhibitors in Mild Steel. Heliyon 2021, 7, e07952. https://doi.org/10.1016/j.heliyon.2021.e07952.Suche in Google Scholar PubMed PubMed Central
27. El Faydy, M., Benhiba, F., About, H., Kerroum, Y., Guenbour, A., Lakhrissi, B., Ismail, W., Verma, C., Sherif, E.-S. M., Ebenso, E. E., Zarrouk, A. Experimental and Computational Investigations on the Anti-corrosive and Adsorption Behavior of 7-N,N′-dialkyaminomethyl-8-Hydroxyquinolines on C40E Steel Surface in Acidic Medium. J. Colloid Interface Sci. 2020, 576, 330–344; https://doi.org/10.1016/j.jcis.2020.05.010.Suche in Google Scholar PubMed
28. Chen, S., Chen, S., Li, W. Corrosion Inhibition Effect of a New Quinoline Derivative on Q235 Steel in H2SO4 Solution. Int. J. Electrochem. Sci. 2019, 14, 11419–11428; https://doi.org/10.20964/2019.12.36.Suche in Google Scholar
29. El Faydy, M., Galai, M., Touhami, M. E., Obot, I. B., Lakhrissi, B., Zarrouk, A. Anticorrosion Potential of Some 5-Amino-8-Hydroxyquinolines Derivatives on Carbon Steel in Hydrochloric Acid Solution: Gravimetric, Electrochemical, Surface Morphological, UV–Visible, DFT and Monte Carlo Simulations. J. Mol. Liq. 2017, 248, 1014–1027; https://doi.org/10.1016/j.molliq.2017.10.125.Suche in Google Scholar
30. El Faydy, M., Benhiba, F., Lakhrissi, B., Ebn Touhami, M., Warad, I., Bentiss, F., Zarrouk, A. The Inhibitive Impact of Both Kinds of 5-Isothiocyanatomethyl-8-Hydroxyquinoline Derivatives on the Corrosion of Carbon Steel in Acidic Electrolyte. J. Mol. Liq. 2019, 295, 111629; https://doi.org/10.1016/j.molliq.2019.111629.Suche in Google Scholar
31. Eldesoky, A. M., Nozha, S. G. The Adsorption and Corrosion Inhibition of 8-Hydroxy-7-Quinolinecarboxaldehyde Derivatives on C-Steel Surface in Hydrochloric Acid. Chin. J. Chem. Eng. 2017, 25, 1256–1265; https://doi.org/10.1016/j.cjche.2016.11.018.Suche in Google Scholar
32. Harvey, T. J., Walsh, F. C., Nahlé, A. H. A Review of Inhibitors for the Corrosion of Transition Metals in Aqueous Acids. J. Mol. Liq. 2018, 266, 160–175. https://doi.org/10.1016/j.molliq.2018.06.014.Suche in Google Scholar
33. Ahmed, S. K., Ali, W. B., Khadom, A. A. Synthesis and Investigations of Heterocyclic Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid. Int. J. Ind. Chem. 2019, 10, 159–173; https://doi.org/10.1007/s40090-019-0181-8.Suche in Google Scholar
34. Daoud, D., Hamani, H., Douadi, T. Novel Heterocyclic Quinoline Derivatives as Green Environmental Corrosion Inhibitors for Carbon Steel in HCl Solution: Experimental and Theoretical Investigation. J. Adhes. Sci. Technol. 2021, 35, 2319–2345. https://doi.org/10.1080/01694243.2021.1885923.Suche in Google Scholar
35. Fu, J., Zang, H., Wang, Y., Li, S., Chen, T., Liu, X. Experimental and Theoretical Study on the Inhibition Performances of Quinoxaline and Its Derivatives for the Corrosion of Mild Steel in Hydrochloric Acid. Ind. Eng. Chem. Res. 2012, 51, 6377–6386. https://doi.org/10.1021/ie202832e.Suche in Google Scholar
36. Xia, J.-J., Zhang, K.-H. Synthesis of N-Substituted Acridinediones and Polyhydroquinoline Derivatives in Refluxing Water. Molecules 2012, 17, 5339–5345; https://doi.org/10.3390/molecules17055339.Suche in Google Scholar PubMed PubMed Central
37. Singh, A., Ansari, K. R., Lin, Y., Quraishi, M. A., Lgaz, H., Chung, I. -M. Corrosion Inhibition Performance of Imidazolidine Derivatives for J55 Pipeline Steel in Acidic Oilfield Formation Water: Electrochemical, Surface and Theoretical Studies. J. Taiwan Inst. Chem. Eng. 2019, 95, 341–356; https://doi.org/10.1016/j.jtice.2018.07.030.Suche in Google Scholar
38. Singh, A., Ansari, K. R., Alanazi, A. K., Quraishi, M. A., Ali, I. H., Lin, Y. Probing Inhibition Effect of Novel Biopolymer Based Composite for the Inhibition of P110 Steel Corrosion in 15% HCl under Dynamic Condition. Sustain. Chem. Pharm. 2022, 26, 100599; https://doi.org/10.1016/j.scp.2022.100599.Suche in Google Scholar
39. Singh, A., Ansari, K. R., Sharma, N. R., Singh, S., Singh, R., Bansal, A., Ali, I. H., Younas, M., Alanazi, A. K., Lin, Y. Corrosion and Bacterial Growth Mitigation in the Desalination Plant by Imidazolium Based Ionic Liquid: Experimental, Surface and Molecular Docking Analysis. J. Environ. Chem. Eng. 2023, 11, 109313; https://doi.org/10.1016/j.jece.2023.109313.Suche in Google Scholar
40. Caihong, Y., Singh, A., Ansari, K. R., Ali, I. H., Kumar, R. Novel Nitrogen Based Heterocyclic Compound as Q235 Steel Corrosion Inhibitor in 15% HCl under Dynamic Condition: a Detailed Experimental and Surface Analysis. J. Mol. Liq. 2022, 362, 119720; https://doi.org/10.1016/j.molliq.2022.119720.Suche in Google Scholar
41. Fragoza-Mar, L., Olivares-Xometl, O., Domínguez-Aguilar, M. A., Flores, E. A., Arellanes-Lozada, P., Jiménez-Cruz, F. Corrosion Inhibitor Activity of 1,3-Diketone Malonates for Mild Steel in Aqueous Hydrochloric Acid Solution. Corros. Sci. 2012, 61, 171–184; https://doi.org/10.1016/j.corsci.2012.04.031.Suche in Google Scholar
42. Singh, A., Ansari, K. R., Quraishi, M. A., Lgaz, H., Lin, Y. Synthesis and Investigation of Pyran Derivatives as Acidizing Corrosion Inhibitors for N80 Steel in Hydrochloric Acid: Theoretical and Experimental Approaches. J. Alloys Compd. 2018, 762, 347–362; https://doi.org/10.1016/j.jallcom.2018.05.236.Suche in Google Scholar
43. Singh, A., Ansari, K. R., Singh Chauhan, D., Quraishi, M. A., Lgaz, H., Chung, I.-M. Comprehensive Investigation of Steel Corrosion Inhibition at Macro/Micro Level by Ecofriendly Green Corrosion Inhibitor in 15% HCl Medium. J. Colloid Interface Sci. 2020, 560, 225–236; https://doi.org/10.1016/j.jcis.2019.10.040.Suche in Google Scholar PubMed
44. Singh, A., Ansari, K. R., Quraishi, M. A., Kaya, S., Guo, L. Aminoantipyrine Derivatives as a Novel Eco-friendly Corrosion Inhibitors for P110 Steel in Simulating Acidizing Environment: Experimental and Computational Studies. J. Nat. Gas Sci. Eng. 2020, 83, 103547; https://doi.org/10.1016/j.jngse.2020.103547.Suche in Google Scholar
45. Singh, A., Ansari, K. R., Lin, Y., Ali, I. H., Kaya, S, El Ibrahimi, B. Inhibitive Performance of Novel/Eco-Friendly Pyrimidine Derivative for Q235 Steel Protection in 15% HCl under Hydrodynamic Condition: Combination of Experimental, Surface and Computational Approach. Mater. Today Commun. 2022, 32, 104110; https://doi.org/10.1016/j.mtcomm.2022.104110.Suche in Google Scholar
46. Hosseini, M., Mertens, S. F. L., Ghorbani, M., Arshadi, M. R. Mater. Chem. Phys. 2003, 78, 800–808; https://doi.org/10.1016/s0254-0584(02)00390-5.Suche in Google Scholar
47. Szlarska-Smialowska, Z. Corros. Sci. 1978, 18, 97–101.10.1016/S0010-938X(78)80079-1Suche in Google Scholar
48. Haque, J., Ansari, K. R., Srivastava, V., Quraishi, M. A., Obot, I. B. Pyrimidine Derivatives as Novel Acidizing Corrosion Inhibitors for N80 Steel Useful for Petroleum Industry: A Combined Experimental and Theoretical Approach. J. Ind. Eng. Chem. 2017, 49, 176–188; https://doi.org/10.1016/j.jiec.2017.01.025.Suche in Google Scholar
49. Beyenal, H., Babauta, J. T. Biofilms in Bioelectrochemical Systems: From Laboratory Practice to Data Interpretation; John Wiley & Sons, Inc: Hoboken, New Jersey, 2015; pp. 249–280.10.1002/9781119097426Suche in Google Scholar
50. Calderón, J. A., Barcia, O. E., Mattos, O. R., Corros. Sci. 2008, 50, 2101–2109.10.1016/j.corsci.2008.04.013Suche in Google Scholar
51. Modiano, S., Carreno, J. A., Fugivara, C. S., Benedetti, A. V., Mattos, O. R. Electrochim. Acta 2005, 51, 641–648; https://doi.org/10.1016/j.electacta.2005.05.022.Suche in Google Scholar
52. Dutta, A., Saha, S. K., Banerjee, P., Sukul, D., Corros. Sci. 2015, 98:541–550.10.1016/j.corsci.2015.05.065Suche in Google Scholar
53. Behpour, M., Ghoreishi, S. M., Soltani, N., Salavati-Niasari, M. Corros. Sci. 2009, 51, 1073–1082; https://doi.org/10.1016/j.corsci.2009.02.011.Suche in Google Scholar
54. Stern, M., Geary, A. L. Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56–63; https://doi.org/10.1149/1.2428496.Suche in Google Scholar
55. Tafel, J. About the Polarization with Cathodic Hydrogen Evolution. J. Phys. Chem. 1905, 50, 641; https://doi.org/10.1515/zpch-1905-5043.Suche in Google Scholar
56. Wang, X., Yang, H., Wang, F. An Investigation of Benzimidazole Derivative as Corrosion Inhibitor for Mild Steel in Different Concentration HCl Solutions. Corros. Sci. 2011, 53, 113–121; https://doi.org/10.1016/j.corsci.2010.09.029.Suche in Google Scholar
57. Xu, X., Singh, A., Sun, Z., Ansari, K. R., Lin, Y. Theoretical, Thermodynamic and Electrochemical Analysis of Biotin Drug as an Impending Corrosion Inhibitor for Mild Steel in 15% Hydrochloric Acid. R. Soc. open sci., 4, 170933; https://doi.org/10.1098/rsos.170933.Suche in Google Scholar PubMed PubMed Central
58. Zarrouk, A., Hammouti, B., Lakhlifi, T., Bentiss, F., Vezin, H. New 1H-Pyrrole-2,5-Dione Derivatives as Efficient Organic Inhibitors of Carbon Steel Corrosion in Hydrochloric Acid Medium: Electrochemical, XPS and DFT Studies. Corros. Sci. 2015, 90, 572–584; https://doi.org/10.1016/j.corsci.2014.10.052.Suche in Google Scholar
59. Galai, M., Rbaa, M., Serrar, H., Ouakki, M., Ech-chebab, A., Abousalem, A. S., Ech-chihbi, E., Dahmani, K., Boukhris, S., Zarrouk, A., EbnTouhami, M. S-thiazine as Effective Inhibitor of Mild Steel Corrosion in HCl Solution: Synthesis, Experimental, Theoretical and Surface Assessment. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 613, 126127; https://doi.org/10.1016/j.colsurfa.2020.126127.Suche in Google Scholar
60. Eftekhari, S., Gugtapeh, H. S., Rezaei, M. Effect of Meat Extract as an Eco-Friendly Inhibitor on Corrosion Behavior of Mild Steel: Electrochemical Noise Analysis Based on Shot Noise and Stochastic Theory. Constr. Build. Mater. 2021, 292, 123423; https://doi.org/10.1016/j.conbuildmat.2021.123423.Suche in Google Scholar
61. Mazumder, M. A., Al-Muallem, H. A., Faiz, M., Ali, S. A. Design and Synthesis of a Novel Class of Inhibitors for Mild Steel Corrosion in Acidic and Carbon Dioxidesaturated Saline Media. Corrosion Sci. 2014, 87, 187–198; https://doi.org/10.1016/j.corsci.2014.06.026.Suche in Google Scholar
62. Temesghen, W., Sherwood, P. Analytical Utility of Valence Band X-Ray Photoelectron Spectroscopy of Iron and its Oxides, with Spectral Interpretation by Cluster and Band Structure Calculations. Anal. Bioanal. Chem. 2002, 373, 601–608; https://doi.org/10.1007/s00216-002-1362-3.Suche in Google Scholar PubMed
63. Babić-Samardžija, K., Lupu, C., Hackerman, N., Barron, A. R., Luttge, A. Inhibitive Properties and Surface Morphology of a Group of Heterocyclic Diazoles as Inhibitors for Acidic Iron Corrosion. Langmuir 2005, 21, 12187–12196; https://doi.org/10.1021/la051766l.Suche in Google Scholar PubMed
64. Roosendaal, S. J., van Asselen, B., Elsenaar, J. W., Vredenberg, A. M., Habraken, F. H. P. M. The Oxidation State of Fe(100) after Initial Oxidation in O2. Surf. Sci. 1999, 442, 329–337; https://doi.org/10.1016/s0039-6028(99)01006-7.Suche in Google Scholar
65. Yuan, L., Wang, Y., Cai, R., Jiang, Q., Wang, J., Boquan Li, B., Sharma, A., Zhou, G. The Origin of Hematite Nanowire Growth during the Thermal Oxidation of Iron. Mater. Sci. Eng., B 2012, 177, 327–336; https://doi.org/10.1016/j.mseb.2011.12.034.Suche in Google Scholar
66. Hong, W. G., Kim, B. H., Lee, S. M., Yu, H. Y., Yun, Y. J., Jun, Y., Lee, J. B., Kim, H. J. Agent-free Synthesis of Graphene Oxide/Transition Metal Oxide Composites and Its Application for Hydrogen Storage. Int. J. Hydrogen Energy 2012, 37, 7594–7599; https://doi.org/10.1016/j.ijhydene.2012.02.010.Suche in Google Scholar
67. Teng, C. C., Ma, C. C., Lu, C. H., Yang, S. Y., Lee, S. H., Hsiao, M. C., Yen, M. Y., Chiou, K. C., Lee, T. M. Thermal Conductivity and Structure of Non-covalent Functionalized Graphene/Epoxy Composites. Carbon 2011, 49, 5107–5116; https://doi.org/10.1016/j.carbon.2011.06.095.Suche in Google Scholar
68. Wang, X., Dou, W. Preparation of Graphite Oxide (GNO) and the Thermal Stability of Silicone Rubber/GNO Nanocomposites. Thermochim. Acta 2012, 529, 25–28; https://doi.org/10.1016/j.tca.2011.11.016.Suche in Google Scholar
69. Saha, S. K., Banerjee, P. RSC Adv. 2015, 5 (87), 71120–71130; https://doi.org/10.1039/c5ra15173b.Suche in Google Scholar
70. Martinez, S. Mater. Chem. Phys. 2003, 77 (1), 97–102; https://doi.org/10.1016/s0254-0584(01)00569-7.Suche in Google Scholar
71. Anusuya, N., Sounthari, P., Saranya, J., Parameswari, K., Chitra, S. Quantum Chemical Study on the Corrosion Inhibition Property of Some Heterocyclic Azole Derivatives. Orient. J. Chem. 2015, 31 (3), 1741; https://doi.org/10.13005/ojc/310355.Suche in Google Scholar
72. Garai, S., Garai, S., Jaisankar, P., Singh, J. K., Elango, A. A Comprehensive Study on Crude Methanolic Extract of Artemisia Pallens (Asteraceae) and Its Active Component as Effective Corrosion Inhibitors of Mild Steel in Acid Solution. Corros. Sci. 2012, 60, 193–204; https://doi.org/10.1016/j.corsci.2012.03.036.Suche in Google Scholar
73. El Ibrahimi, B., Baddouh, A., Oukhrib, R., El Issami, S., Hafidi, Z., Bazzi, L. Electrochemical and In Silico Investigations into the Corrosion Inhibition of Cyclic Amino Acids on Tin Metal in the Saline Environment. Surface. Interfac. 2021, 23, 100966; https://doi.org/10.1016/j.surfin.2021.100966.Suche in Google Scholar
74. Eduok, U., Ohaeri, E., Szpunar, J. Electrochemical and Surface Analyses of X70 Steel Corrosion in Simulated Acid Pickling Medium: Effect of Poly(N-Vinyl Imidazole) Grafted Carboxymethyl Chitosan Additive. Electrochim. Acta 2018, 278, 302–312; https://doi.org/10.1016/j.electacta.2018.05.060.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0377).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- Biomedical and agricultural applications of gold nanoparticles (AuNPs): a comprehensive review
- Original Papers
- Growth and physiochemical properties of semi organic ammonium pentaborate dihydrate single crystal
- A comparative investigation on the surface and physicochemical properties of organobimetallic thiocyanate complexes of Cadmium, Zinc, Mercury and Manganese
- Insights into the corrosion resistance of a novel quinoline derivative on Q235 steel in acidizing medium under hydrodynamic condition: experimental and surface study
- Geometrical factor, bond order analysis, vibrational energies, electronic properties (gas and solvent phases), topological and molecular docking analysis on Ipriflavone-osteoporosis diseases
- Exploration of facile hydrothermally produced pure nickel oxide nanostructures as an effective electrode material for the enhanced supercapacitor applications
- Correlation between surface morphology and photocatalytic performance of electrochemically anodized SnO2 nanoparticles
- Quantum mechanical treatment for potential antiphlogistic effects from the leaf extract of Ocimum basilicum citriodorum using gas chromatography-mass spectrometry (GCMS)
- Homology modeling and molecular docking study of metabotropic glutamate receptor 5 variant F: an attempt to develop drugs for treating CNS diseases
Artikel in diesem Heft
- Frontmatter
- Review Article
- Biomedical and agricultural applications of gold nanoparticles (AuNPs): a comprehensive review
- Original Papers
- Growth and physiochemical properties of semi organic ammonium pentaborate dihydrate single crystal
- A comparative investigation on the surface and physicochemical properties of organobimetallic thiocyanate complexes of Cadmium, Zinc, Mercury and Manganese
- Insights into the corrosion resistance of a novel quinoline derivative on Q235 steel in acidizing medium under hydrodynamic condition: experimental and surface study
- Geometrical factor, bond order analysis, vibrational energies, electronic properties (gas and solvent phases), topological and molecular docking analysis on Ipriflavone-osteoporosis diseases
- Exploration of facile hydrothermally produced pure nickel oxide nanostructures as an effective electrode material for the enhanced supercapacitor applications
- Correlation between surface morphology and photocatalytic performance of electrochemically anodized SnO2 nanoparticles
- Quantum mechanical treatment for potential antiphlogistic effects from the leaf extract of Ocimum basilicum citriodorum using gas chromatography-mass spectrometry (GCMS)
- Homology modeling and molecular docking study of metabotropic glutamate receptor 5 variant F: an attempt to develop drugs for treating CNS diseases