Noncovalent interactions in N-methylurea crystalline hydrates
-
Aleksandr S. Kazachenko
, Noureddine Issaoui
, Utkirjon Holikulov , Omar M. Al-Dossary , Ilya S. Ponomarev , Anna S. Kazachenko , Feride Akman and Leda G. Bousiakou
Abstract
Urea and its derivatives play a significant role in modern organic chemistry and find application in various fields. This study presents the results of investigations of N-methylurea crystalline hydrates. Initial N-methylurea and its crystalline hydrates have been examined by FTIR spectroscopy and X-ray diffraction analysis. It has been found that the incorporation of water molecules into N-methylurea crystals leads to a shift of intensity peaks in both the FTIR spectra and X-ray diffraction patterns. Methylurea crystalline hydrates in the gaseous phase have been additionally explored within the density functional theory at the B3LYP/6-31+G(d,p) level and the theory of atoms in molecules. The nature of water and methylurea molecular interactions via hydrogen bonds have been studied using the electron localization function and noncovalent reduced density gradient. The thermodynamic and nonlinear optical properties of methylurea crystalline hydrate have been determined. The atoms in molecules, electron localization functions, and localized orbital locator topological analyses have been carried out to elucidate the nature of hydrogen bonds in methylurea crystalline hydrates.
Acknowledgments
The theoretical study was supported by the Researchers Supporting Project no. RSP2023R61, King Saud University, Riyadh, Saudi Arabia. The experimental study was carried out within the budget plan # 0287-2021-0017 for the Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, on the equipment of the Krasnoyarsk Regional Center for Collective Use, Krasnoyarsk Science Center. The authors are grateful to G.N. Bondarenko for the X-ray study.
-
Research ethics: In the course of work on this article, the authors did not conduct research on animals and humans in any form.
-
Informed consent: All co-authors agree to the publication of this material.
-
Author contribution: Aleksandr S. Kazachenko – Formal analysis, Data Curation, Writing – Original Draft, Writing – Review & Editing, Investigation; Utkirjon Holikulov – Formal analysis, Investigation, Writing - Original Draft; Noureddine Issaoui – Methodology, Investigation, Data Curation, Writing – Original Draft, Writing – Review & Editing; Omar M. Al-Dossary – Formal analysis, Writing – Original Draft; Ilya S. Ponomarev – Methodology, Investigation; Anna S. Kazachenko – Formal analysis, Investigation; Feride Akman – Conceptualization, Methodology, Software, Investigation, Writing – Original Draft, Writing – Review & Editing; Leda G. Bousiakou – Formal analysis, Writing – Original Draft.
-
Competing interests: The authors declare that they have no conflicts of interest.
-
Research funding: The theoretical study was supported by the Researchers Supporting Project no. RSP2023R61, King Saud University, Riyadh, Saudi Arabia. This study partially was carried out within the budget plan #0287-2021-0017 for the Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, on the equipment of the Krasnoyarsk Regional Center for Collective Use, Krasnoyarsk Science Center.
-
Data availability: Not applicable.
References
1. Devi, R. N., Burkholder, E., Zubieta, J. Hydrothermal synthesis of polyoxotungstate clusters, surface-modified with M(II)-organonitrogen subunits. Inorg. Chim. Acta 2003, 348, 150–156; https://doi.org/10.1016/s0020-1693(02)01472-x.Search in Google Scholar
2. Chen, Z., Li, M., Qiu, W., Xie, W., Gu, Q., Su, S.-J. Organic clusters with time-dependent color-tunable dual persistent room-temperature phosphorescence. J. Mater. Chem. C 2021, 9, 15998–16005; https://doi.org/10.1039/d1tc04081b.Search in Google Scholar
3. Alizadeh, M. H., Eshtiagh-Hosseini, H., Mirzaei, M., Salimi, A. R., Razavi, H. Synthesis, X-ray crystallography characterization, vibrational spectroscopy, and DFT theoretical studies of a new organic–inorganic hybrid material. Struct. Chem. 2008, 19, 155–164; https://doi.org/10.1007/s11224-007-9267-6.Search in Google Scholar
4. Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A., Camaioni, E. Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Med. Chem. 2021, 12, 1046–1064; https://doi.org/10.1039/d1md00058f.Search in Google Scholar PubMed PubMed Central
5. Alizadeh, M. H., Salimi, A. R. Theoretical studies on the geometry, vibrational frequencies and electronic properties of [X(OH)6Mo6O18]4−/3− (X=FeII/CoIII) Anderson-type anions. J. Mol. Struct. THEOCHEM 2007, 809, 1–10; https://doi.org/10.1016/j.theochem.2007.01.003.Search in Google Scholar
6. Kazachenko, A. S., Tomilin, F. N., Pozdnyakova, A. A., Vasilyeva, N. Y., Malyar, Y. N., Kuznetsova, S. A., Avramov, P. V. Theoretical DFT interpretation of infrared spectra of biologically active arabinogalactan sulphated derivatives. Chem. Pap. 2020, 74, 4103–4113; https://doi.org/10.1007/s11696-020-01220-3.Search in Google Scholar
7. Medimagh, M., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Kazachenko, A. S., Marouani, H., Wojcik, M. J. Molecular modeling and biological activity analysis of new organic-inorganic hybrid: 2-(3,4-dihydroxyphenyl) ethanaminium nitrate. J. King Saud Univ. Sci. 2021, 33, 101616; https://doi.org/10.1016/j.jksus.2021.101616.Search in Google Scholar
8. Praveen, K., Brumme, R. Alkylated ureas: mineralization and evaluation as N sources. Fertil. Res. 1995, 41, 117–124; https://doi.org/10.1007/bf00750753.Search in Google Scholar
9. Shaw, W. H. R., Raval, D. N. The inhibition of urease by methylurea. J. Am. Chem. Soc. 1961, 83, 2866–2868; https://doi.org/10.1021/ja01474a019.Search in Google Scholar
10. Moghaddam, F. M., Daneshfar, M., Daneshfar, Z., Iraji, A., Samandari-Najafabad, A., Ali Faramarzi, M., Mahdavi, M. Synthesis and characterization of 1-amidino-O-alkylureas metal complexes as α-glucosidase Inhibitors: structure-activity relationship, molecular docking, and kinetic studies. J. Mol. Struct. 2022, 1250, 131726; https://doi.org/10.1016/j.molstruc.2021.131726.Search in Google Scholar
11. Warren, J. R., Gordon, J. A. The nature of alkylurea and urea denaturation of α-chymotrypsinogen. Biochim. Biophys. Acta, Protein Struct. 1976, 420, 397–405; https://doi.org/10.1016/0005-2795(76)90331-7.Search in Google Scholar PubMed
12. Rubinstein, A. Preclinical studies of alkylureas as anti-HIV-1 contraceptive. Curr. Pharm. Des. 2005, 11, 3769–3778; https://doi.org/10.2174/138161205774580697.Search in Google Scholar PubMed
13. Elbaum, D., Nagel, R. L., Bookchin, R. M., Herskovits, T. T. Effect of alkylureas on the polymerization of hemoglobin S. Proc. Natl. Acad. Sci. U. S. A. 1974, 71, 4718–4722; https://doi.org/10.1073/pnas.71.12.4718.Search in Google Scholar PubMed PubMed Central
14. Yavari, I., Zabarjad-Shiraz, N. Three-component reaction between triphenylphosphine, dialkyl acetylenedicarboxylates and urea or N-methylurea. Mol. Diversity 2006, 10, 23–27; https://doi.org/10.1007/s11030-006-8696-2.Search in Google Scholar PubMed
15. Sedova, V. F., Krivopalov, V. P., Shkurko, O. P. Three-component condensation of α-nitroacetophenone, aromatic aldehydes, and methylurea. Russ. Chem. Bull. 2007, 56, 1184–1189; https://doi.org/10.1007/s11172-007-0180-3.Search in Google Scholar
16. Klepov, V. V., Serezhkina, L. B., Grigor’ev, M. S., Ignatenko, E. O., Serezhkin, V. N. Uranyl methacrylate complexes with carbamide and methylcarbamide: synthesis and structure. Russ. J. Inorgan. Chem. 2018, 63, 1019–1025; https://doi.org/10.1134/s0036023618080119.Search in Google Scholar
17. Serezhkin, V. N., Grigor’ev, M. S., Abdul’myanov, A. R., Serezhkina, L. B. Synthesis and structure of crystals of UO2(C2H5COO)2·1.5L (L=methylurea or N,N′-dimethylurea). Radiochemistry 2016, 58, 114–123; https://doi.org/10.1134/s1066362216020028.Search in Google Scholar
18. Calvaruso, G., Ruggirello, A., Turco Liveri, V. FT-IR investigation of the N-methylurea state in AOT reversed micelles. J. Nanopart. Res. 2002, 4, 239–246; https://doi.org/10.1023/a:1019918307568.10.1023/A:1019918307568Search in Google Scholar
19. Barone, G., Castronuovo, G., Cesáro, A., Elia, V. Hydrophobic effect in aqueous solutions of nonelectrolytes. II. Cross-interactions of alkylureas. J. Solution Chem. 1980, 9, 867–876; https://doi.org/10.1007/bf00667999.Search in Google Scholar
20. Khurgin, Y. I., Kudryashova, V. A., Zavizion, V. A. Investigation of intermolecular interactions in solutions by means of millimeter-wave spectroscopy 5. Positive and negative hydration effects in aqueous solutions of methylureas. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1990, 39, 265–270; https://doi.org/10.1007/bf00960650.Search in Google Scholar
21. Barone, G., Rizzo, E., Volpe, V. Osmotic and activity coefficients of alkylureas in water at 25 °C. J. Chem. Eng. Data 1976, 21, 59–61; https://doi.org/10.1021/je60068a022.Search in Google Scholar
22. Kebede, G., Mitev, P. D., Broqvist, P., Eriksson, A., Hermansson, K. Fifty shades of water: benchmarking DFT functionals against experimental data for ionic crystalline hydrates. J. Chem. Theory Comput. 2019, 15, 584–594; https://doi.org/10.1021/acs.jctc.8b00423.Search in Google Scholar PubMed
23. Dureckova, H., Woo, T. K., Alavi, S. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases. J. Chem. Phys. 2016, 144, 044501; https://doi.org/10.1063/1.4940321.Search in Google Scholar PubMed
24. Wang, H. -C., Zhu, X. -L., Cao, J. -W., Qin, X. -L., Yang, Y. -C., Niu, T. -X., Lu, Y. -B., Zhang, P. Density functional theory studies of hydrogen bonding vibrations in sI gas hydrates. New J. Phys. 2020, 22, 093066; https://doi.org/10.1088/1367-2630/abb54c.Search in Google Scholar
25. Costa, S. N., Freire, V. N., Caetano, E. W. S., Maia, F. F., Barboza, C. A., Fulco, U. L., Albuquerque, E. L. DFT calculations with van der Waals interactions of hydrated calcium carbonate crystals CaCO3·(H2O, 6H2O): structural, electronic, optical, and vibrational properties. J. Phys. Chem. A 2016, 120, 5752–5765; https://doi.org/10.1021/acs.jpca.6b05436.Search in Google Scholar PubMed
26. Kildgaard, J. V., Mikkelsen, K. V., Bilde, M., Elm, J. Hydration of atmospheric molecular clusters II: organic acid–water clusters. J. Phys. Chem. A 2018, 122, 8549–8556; https://doi.org/10.1021/acs.jpca.8b07713.Search in Google Scholar PubMed
27. Keesee, R. G., Castleman, A. W. The properties of organic compounds in molecular clusters. Aerosol Sci. Technol. 1989, 10, 352–357; https://doi.org/10.1080/02786828908959272.Search in Google Scholar
28. Oka, K., Shibue, T., Sugimura, N., Watabe, Y., Winther-Jensen, B., Nishide, H. Long-lived water clusters in hydrophobic solvents investigated by standard NMR techniques. Sci. Rep. 2019, 9, 223; https://doi.org/10.1038/s41598-018-36787-1.Search in Google Scholar PubMed PubMed Central
29. Sauza-de la Vega, A., Salazar-Lozas, H., Vallejo Narváez, W. E., Hernández-Rodríguez, M., Rocha-Rinza, T. Water clusters as bifunctional catalysts in organic chemistry: the hydrolysis of oxirane and its methyl derivatives. Org. Biomol. Chem. 2021, 19, 6776–6780; https://doi.org/10.1039/d1ob01026c.Search in Google Scholar PubMed
30. Rudyak, V. Y., Avakyan, V. G., Nazarov, V. B., Alfimov, M. V. Water cluster for the simulation of hydration of organic compounds: applying the DFT method. Nanotechnol. Russ. 2009, 4, 27–37; https://doi.org/10.1134/s1995078009010030.Search in Google Scholar
31. Akman, F., Issaoui, N., Kazachenko, A. S. Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J. Mol. Model. 2020, 26, 161; https://doi.org/10.1007/s00894-020-04423-3.,Search in Google Scholar PubMed
32. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Kazachenko, A. S., Miroshnokova, A. V., Xiang, Z. Hydrogen bonds interactions in biuret-water clusters: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NLO analysis. J. King Saud Univ. Sci. 2022, 34, 102350; https://doi.org/10.1016/j.jksus.2022.102350.Search in Google Scholar
33. Kazachenko, A. S., Akman, F., Abdelmoulahi, H., Issaoui, N., Malyar, Y. N., Al-Dossary, O., Wojcik, M. J. Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NBO analysis. J. Mol. Liq. 2021, 342, 117475; https://doi.org/10.1016/j.molliq.2021.117475.Search in Google Scholar
34. Kazachenko, A. S., Medimagh, M., Issaoui, N., Al-Dossary, O., Wojcik, M. J., Kazachenko, A. S., Miroshnokova, A. V., Malyar, Y. N. Sulfamic acid/water complexes (SAA-H2O(1-8)) intermolecular hydrogen bond interactions: FTIR, X-ray, DFT and AIM analysis. J. Mol. Struct. 2022, 1265, 133394; https://doi.org/10.1016/j.molstruc.2022.133394.Search in Google Scholar
35. Arshad, M. N., Faidallah, H. M., Asiri, A. M., Kosar, N., Mahmood, T. Structural, spectroscopic and nonlinear optical properties of sulfonamide derivatives; experimental and theoretical study. J. Mol. Struct. 2020, 1202, 127393; https://doi.org/10.1016/j.molstruc.2019.127393.Search in Google Scholar
36. Hanif, M., Kosar, N., Mahmood, T., Muhammad, M., Ullah, F., Tahir, M. N., Ribeiro, A. I., Khan, E. Schiff bases derived from 2-Amino-6-methylbenzothiazole, 2-Amino-5-chloropyridine and 4-chlorobenzaldehyde: structure, computational studies and evaluation of biological activity. ChemistrySelect 2022, 7, e202203386; https://doi.org/10.1002/slct.202203386.Search in Google Scholar
37. Ahmad, S., Mahmood, T., Ahmad, M., Arshad, M. N., Ullah, F., Shafiq, M., Aslam, S., Aslam, S., Asiri, A.M. Synthesis, single crystal X-ray, spectroscopic and computational (DFT) studies 2,1-benzothiazine based hydrazone derivatives. J. Mol. Struct. 2021, 1230, 129854; https://doi.org/10.1016/j.molstruc.2020.129854.Search in Google Scholar
38. Ahmad, G., Rasool, N., Qamar, M.U., Alam, M. M., Kosar, N., Mahmood, T., Imran, M. Facile synthesis of 4-aryl-N-(5-methyl-1H-pyrazol-3-yl)benzamides via Suzuki Miyaura reaction: antibacterial activity against clinically isolated NDM-1-positive bacteria and their Docking Studies. Arab. J. Chem. 2021, 14, 103270; https://doi.org/10.1016/j.arabjc.2021.103270.Search in Google Scholar
39. Ahmed, M. N., Shabbir, S., Batool, B., Mahmood, T., Rashid, U., Yasin, K. A., Tahir, M. N., Arias Cassará, M. L., Gil, D. M. A new insight into non-covalent interactions in 1,4-disubstituted 1H-1,2,3-Triazole: synthesis, X-ray structure, DFT calculations, in vitro lipoxygenase inhibition (LOX) and in silico studies. J. Mol. Struct. 2021, 1236, 130283; https://doi.org/10.1016/j.molstruc.2021.130283.Search in Google Scholar
40. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford CT, 2009.Search in Google Scholar
41. GaussView, 2000–2003 Guassian, Inc., Semichem. Inc.: Carnergie Office Parck-Building 6 Pittsburgh PASearch in Google Scholar
42. Lu, T., Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed
43. Suresh, A., Manikandan, N., Vinitha, G. N-Methylurea Succinic Acid (NMUSA): an optically non-linear organic crystal for NLO device application. Mater. Res. Express 2019, 6, 025102; https://doi.org/10.1088/2053-1591/aaed4a.Search in Google Scholar
44. Singh, M., Kumar, A. Hydrophobic interactions of methylureas in aqueous solutions estimated with density, molal volume, viscosity and surface tension from 293.15 to 303.15 K. J. Solution Chem. 2006, 35, 567–582; https://doi.org/10.1007/s10953-005-9008-7.Search in Google Scholar
45. Larkin, P. Infrared and Raman Spectroscopy, 2 ed.; Elsevier: USA, 2017.10.1016/B978-0-12-804162-8.00009-4Search in Google Scholar
46. Yavna, V., Nazdracheva, T., Morozov, A., Ermolov, Y., Kochur, A. Ab initio simulation of the IR spectrum of hydrated kaolinite. Crystals 2021, 11, https://doi.org/10.3390/cryst11091146.Search in Google Scholar
47. Schiffer, J., Hornig, D. F. Vibrational dynamics in liquid water: a new interpretation of the infrared spectrum of the liquid. J. Chem. Phys. 1968, 49, 4150–4160; https://doi.org/10.1063/1.1670729.Search in Google Scholar
48. Janarthanan, S., Kishore Kumar, T., Selvakumar, S., Rand, S., Sagayara, P., Prem Anand, D. Investigation on the mechanical, dielectric and photoconductivity properties of N-methyl urea NLO single crystals. Indian J. Phys. 2008, 82, 1287–1292.Search in Google Scholar
49. Li, J., Zhang, Y. Morphology and crystallinity of urea-formaldehyde resin adhesives with different molar ratios. Polymers 2021, 13; https://doi.org/10.3390/polym13050673.Search in Google Scholar PubMed PubMed Central
50. Desiraju, G., Steiner, T. The Weak Hydrogen Bond: In Structural Chemistry and Biology; Oxford University Press: UK, 2001.10.1093/acprof:oso/9780198509707.001.0001Search in Google Scholar
51. Headrick, J. M., Diken, E. G., Walters, R. S., Hammer, N. I., Christie, R. A., Cui, J., Myshakin, E. M., Duncan, M. A., Johnson, M.A., Jordan, K. D. Spectral signatures of hydrated proton vibrations in water clusters. Science 2005, 308, 1765–1769; https://doi.org/10.1126/science.1113094.Search in Google Scholar PubMed
52. Kim, K. S., Tarakeshwar, P., Lee, J. Y. Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem. Rev. 2000, 100, 4145–4186; https://doi.org/10.1021/cr990051i.Search in Google Scholar PubMed
53. Mandal, A., Prakash, M., Kumar, R. M., Parthasarathi, R., Subramanian, V. Ab initio and DFT studies on methanol–water clusters. J. Phys. Chem. A 2010, 114, 2250–2258; https://doi.org/10.1021/jp909397z.Search in Google Scholar PubMed
54. Yang, M., Senet, P., Van Alsenoy, C. DFT study of polarizabilities and dipole moments of water clusters. Int. J. Quantum Chem. 2005, 101, 535–542; https://doi.org/10.1002/qua.20308.Search in Google Scholar
55. Prakash, M., Subramanian, V. Ab initio and density functional theory (DFT) studies on triflic acid with water and protonated water clusters. J. Mol. Model. 2016, 22, 293; https://doi.org/10.1007/s00894-016-3158-y.Search in Google Scholar PubMed
56. Miró, P., Cramer, C. J. Water clusters to nanodrops: a tight-binding density functional study. Phys. Chem. Chem. Phys. 2013, 15, 1837–1843; https://doi.org/10.1039/c2cp43305b.Search in Google Scholar PubMed
57. Gillan, M. J., Alfè, D., Michaelides, A. Perspective: how good is DFT for water? J. Chem. Phys. 2016, 144, 130901; https://doi.org/10.1063/1.4944633.Search in Google Scholar PubMed
58. Garza, J., Nichols, J. A., Dixon, D. A. The optimized effective potential and the self-interaction correction in density functional theory: application to molecules. J. Chem. Phys. 2000, 112, 7880–7890; https://doi.org/10.1063/1.481421.Search in Google Scholar
59. Bursch, M., Mewes, J.-M., Hansen, A., Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry**. Angew. Chem., Int. Ed. 2022, 61, e202205735; https://doi.org/10.1002/ange.202205735.Search in Google Scholar
60. Zhang, S., Zhang, Y., Wu, C., Yang, H., Zhang, Q., Wang, F., Wang, J., Gates, I., Wang, J. A facile strategy to prepare small water clusters via interacting with functional molecules. Int. J. Mol. Sci. 2021, 22, https://doi.org/10.3390/ijms22158250.Search in Google Scholar PubMed PubMed Central
61. Hammami, F., Ghalla, H., Nasr, S. Intermolecular hydrogen bonds in urea–water complexes: DFT, NBO, and AIM analysis. Comput. Theor. Chem. 2015, 1070, 40–47; https://doi.org/10.1016/j.comptc.2015.07.018.Search in Google Scholar
62. Linda Varghese, A., Abraham, I., George, M. DFT studies on nonlinear optical properties of N-[(naphthalen-5-yl)methyl]-4-nitrobenzamine. Mater. Today Proc. 2019, 9, 92–96; https://doi.org/10.1016/j.matpr.2019.02.041.Search in Google Scholar
63. Semin, S., Li, X., Duan, Y., Rasing, T. Nonlinear optical properties and applications of fluorenone molecular materials. Adv. Opt. Mater. 2021, 9, 2100327; https://doi.org/10.1002/adom.202100327.Search in Google Scholar
64. Shin, D., Jung, Y. Molecular electrostatic potential as a general and versatile indicator for electronic substituent effects: statistical analysis and applications. Phys. Chem. Chem. Phys. 2022, 24, 25740–25752; https://doi.org/10.1039/d2cp03244a.Search in Google Scholar PubMed
65. Gasteiger, J., Li, X., Rudolph, C., Sadowski, J., Zupan, J. Representation of molecular electrostatic potentials by topological feature maps. J. Am. Chem. Soc. 1994, 116, 4608–4620; https://doi.org/10.1021/ja00090a009.Search in Google Scholar
66. Srebrenik, S., Weinstein, H., Pauncz, R. Analytical calculation of atomic and molecular electrostatic potentials from the Poisson equation. Chem. Phys. Lett. 1973, 20, 419–423; https://doi.org/10.1016/0009-2614(73)85188-7.Search in Google Scholar
67. Sagaama, A., Issaoui, N., Al-Dossary, O., Kazachenko, A. S., Wojcik, M. J. Non covalent interactions and molecular docking studies on morphine compound. J. King Saud Univ. Sci. 2021, 33, 101606; https://doi.org/10.1016/j.jksus.2021.101606.Search in Google Scholar
68. Gatfaoui, S., Issaoui, N., Roisnel, T., Marouani, H. A proton transfer compound template phenylethylamine: synthesis, a collective experimental and theoretical investigations. J. Mol. Struct. 2019, 1191, 183–196; https://doi.org/10.1016/j.molstruc.2019.04.093.Search in Google Scholar
69. Jmai, M., Gatfaoui, S., Issaoui, N., Roisnel, T., Kazachenko, A. S., Al-Dossary, O., Marouani, H., Kazachenko, A. S. Synthesis, empirical and theoretical investigations on new histaminium bis(trioxonitrate) compound. Molecules 2023, 28, https://doi.org/10.3390/molecules28041931.Search in Google Scholar PubMed PubMed Central
70. Dexlin, X. D. D., Deephlin Tarika, J. D., Madhan Kumar, S., Mariappan, A., Joselin Beaula, T. Synthesis and DFT computations on structural, electronic and vibrational spectra, RDG analysis and molecular docking of novel Anti COVID-19 molecule 3, 5 dimethyl pyrazolium 3, 5 dichloro salicylate. J. Mol. Struct. 2021, 1246, 131165; https://doi.org/10.1016/j.molstruc.2021.131165.Search in Google Scholar PubMed PubMed Central
71. Bader, R. F. W. Atoms in Molecules a Quantum Theory; Oxford University Press: Oxford, 1990.10.1093/oso/9780198551683.001.0001Search in Google Scholar
72. Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15; https://doi.org/10.1021/ar00109a003.Search in Google Scholar
73. Rozas, I., Alkorta, I., Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 2000, 122, 11154–11161; https://doi.org/10.1021/ja0017864.Search in Google Scholar
74. Tang, T. H., Deretey, E., Knak Jensen, S. J., Csizmadia, I. G. Hydrogen bonds: relation between lengths and electron densities at bond critical points. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys. 2006, 37, 217–222; https://doi.org/10.1140/epjd/e2005-00317-0.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative
Articles in the same Issue
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative