Home A review on application of green nanoparticles from neem and eucalyptus
Article
Licensed
Unlicensed Requires Authentication

A review on application of green nanoparticles from neem and eucalyptus

Published/Copyright: November 8, 2023

Abstract

Nanotechnology is concerned with the creation and use of nanoscale materials. The synthetic methods for nanoparticles are associated with environmental hazards. This review begins with the need for synthesizing nanoparticles biogenically. Hence, it describes the green synthesis of different metal nanoparticles using the plant extracts of neem (Azadirachta indica), and eucalyptus (Eucalyptus globulus) as reductant and stabilizers. Importantly, this review summarizes the medical applications of green nanoparticles, made using plants with medicinal values. The environmental uses of the same nanoparticles are also explored. There is immense literature where nanoparticle-based applications in medicine and environment concentrates more on chemical or physical methods, we hope this review would help reader to focus more on environment friendly synthesis of nanoparticles and their important roles.


Corresponding author: Amrita Singh, Department of Biotechnology and Medical Engineering, NIT Rourkela, Rourkela, Odhisa, India, E-mail:

Acknowledgements

The authors are thankful to the management of Lovely Professional University for providing the necessary facilities for the completion of the review article.

  1. Research ethics: Not applicable.

  2. Author contributions: Akhila contributed in the writing of the review article. Dr Amrita Singh designed, written, reviewed, edited and conceptualized the work. Dr Anuradha Sharma edited and reviewed the work.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. McNeil, S. E. Nanotechnology for the biologist. J. Leukocyte Biol. 2005, 78, 585–594, https://doi.org/10.1189/jlb.0205074.Search in Google Scholar PubMed

2. Khan, N., Ali, S., Latif, S., Mehmood, A. Biological synthesis of nanoparticles and their applications in sustainable agriculture production. Nat. Sci. 2022, 14, 226–234, https://doi.org/10.4236/ns.2022.146022.Search in Google Scholar

3. Patil, N., Bhaskar, R., Vyavhare, V., Dhadge, R., Khaire, V., Patil, Y. Overview on methods of synthesis of nanoparticles. Int. J. Curr. Pharm. Res. 2021, 13, 11–16, https://doi.org/10.22159/ijcpr.2021v13i2.41556.Search in Google Scholar

4. Ijaz, I., Gilani, E., Nazir, A., Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245, https://doi.org/10.1080/17518253.2020.1802517.Search in Google Scholar

5. Surender, Gahlot, A. Physical methods of nanoparticles preparation – an overview. Int. J. Adv. Eng. Manag. 2021, 3, 812–816.Search in Google Scholar

6. Satyanarayana, T., Sudhakar Reddy, S. A review on chemical and physical synthesis methods of nanomaterials. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2885–2889; https://doi.org/10.22214/ijraset.2018.1396.Search in Google Scholar

7. Iravani, S., Korbekandi, H., Mirmohammadi, S. V., Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Int. J. Res. Pharm. Sci. 2014, 9, 385–406.Search in Google Scholar

8. Nie, P., Zhao, Y., Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: a review. Ecotoxicol. Environ. Saf. 2023, 253, 114636; https://doi.org/10.1016/j.ecoenv.2023.114636.Search in Google Scholar PubMed

9. Yugandhar, P., Haribabu, R., Savithramma, N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech 2015, 5, 1031–1039, https://doi.org/10.1007/s13205-015-0307-4.Search in Google Scholar PubMed PubMed Central

10. Kuppusamy, P., Yusoff, M. M., Maniam, G. P., Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm. J. 2016, 24, 473–484, https://doi.org/10.1016/j.jsps.2014.11.013.Search in Google Scholar PubMed PubMed Central

11. Moulton, M. C., Braydich-Stolle, L. K., Nadagouda, M. N., Kunzelman, S., Hussain, S. M., Varma, R. S. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2010, 2, 763–770, https://doi.org/10.1039/c0nr00046a.Search in Google Scholar PubMed

12. Nayak, S., Bhat, M. P., Udayashankar, A. C., Lakshmeesha, T. R., Geetha, N., Jogaijah, S. Biosynthesis and characterization of Dillenia indica-mediated silver nanoparticles and their biological activity. Appl. Organomet. Chem. 2020, 34, 1–9; https://doi.org/10.1002/aoc.5567.Search in Google Scholar

13. Mikhailova, E. O. Silver nanoparticles: mechanism of action and probable bio-application. J. Funct. Biomater. 2022, 11, 84, https://doi.org/10.3390/jfb11040084.Search in Google Scholar PubMed PubMed Central

14. Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., Jose-Yacaman, M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 2003, 19, 1357–1361, https://doi.org/10.1021/la020835i.Search in Google Scholar

15. Gopinath, K., Gowri, S., Arumugam, A. Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J. Nanostruct. Chem. 2013, 3, 1–7, https://doi.org/10.1186/2193-8865-3-68.Search in Google Scholar

16. Lin, P. C., Lin, S., Wang, P. C., Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014, 32, 711–726, https://doi.org/10.1016/j.biotechadv.2013.11.006.Search in Google Scholar PubMed PubMed Central

17. Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., Brestic, M. Application of silicon nanoparticles in agriculture. 3 Biotech 2019, 9, 1–11, https://doi.org/10.1007/s13205-019-1626-7.Search in Google Scholar PubMed PubMed Central

18. Rastegari, E., Hsiao, Y. J., Lai, W. Y., Lai, Y. H., Yang, T. C., Chen, S. J., Huang, P. I., Chiou, S. H., Mou, C. Y., Chien, Y. An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics 2021, 13, 1067, https://doi.org/10.3390/pharmaceutics13071067.Search in Google Scholar PubMed PubMed Central

19. Novi, V. T., Gonzalez, A., Brockgreitens, J., Abbas, A. Highly efficient and durable antimicrobial nanocomposite textiles. Sci. Rep. 2022, 12, 17332, https://doi.org/10.1038/s41598-022-22370-2.Search in Google Scholar PubMed PubMed Central

20. Bapat, R. A., Chaubal, T. V., Joshi, C. P., Bapat, P. R., Choudhury, H., Pandey, M., Gorain, B., Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng., C 2018, 91, 881–898, https://doi.org/10.1016/j.msec.2018.05.069.Search in Google Scholar PubMed

21. Araújo, R., Meira Castro, A. C., Fiúza, A. The use of nanoparticles in soil and water remediation processes. Mater. Today: Proc. 2015, 2, 315–320, https://doi.org/10.1016/j.matpr.2015.04.055.Search in Google Scholar

22. Mansoori, G. A., Rohani Bastami, T., Ahmadpur, A., Eshaghi, Z. Environmental application of nanotechnology. In Annual Review of Nano Research; World Scientific Publishing Co Pte Ltd, Chicago, USA 2008; pp. 439–493, Ch. 10.10.1142/9789812790248_0010Search in Google Scholar

23. Wan Ismail, W. N., Irwan Syah, M. I. A., Abd Muhet, N. H., Abu Bakar, N. H., Mohd Yusop, H., Abu Samah, N. Adsorption behavior of heavy metal ions by hybrid inulin-TEOS for water treatment. Civ. Eng. J. 2022, 8, 1787–1798; https://doi.org/10.28991/cej-2022-08-09-03.Search in Google Scholar

24. Hashem, M. A., Payel, S., Hasan, M., Momen, M. A., Sahen, M. S. Green preservation of goatskin to deplete chloride from tannery wastewater. HighTech Innovation J. 2021, 2, 99–107; https://doi.org/10.28991/hij-2021-02-02-03.Search in Google Scholar

25. Varadavenkatesan, T., Selvaraj, R., Vinayagam, R. Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J. Mol. Liq. 2016, 221, 1063–1070, https://doi.org/10.1016/j.molliq.2016.06.064.Search in Google Scholar

26. Verma, A., Mehata, M. S. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9, 109–115, https://doi.org/10.1016/j.jrras.2015.11.001.Search in Google Scholar

27. Song, J. Y., Kim, B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84, https://doi.org/10.1007/s00449-008-0224-6.Search in Google Scholar PubMed

28. Mishra, A., Kaushik, N. K., Sardar, M., Sahal, D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf., B 2013, 111, 713–718, https://doi.org/10.1016/j.colsurfb.2013.06.036.Search in Google Scholar PubMed

29. Subramani, K., Murugan, V., Shanmugam, B. K., Rangaraj, S., Palanisamy, M., Venkatachalam, R., Suresh, V. An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem). J. Alloys Compd. 2017, 723, 698–707, https://doi.org/10.1016/j.jallcom.2017.06.242.Search in Google Scholar

30. Zainurin, M. A. N., Zainol, I. Biogenic synthesis of silver nanoparticles using neem leaf extract as reducing agent and hydrolyzed collagen as stabilizing agent. Malays. J. Microsc. 2022, 18, 215–225.Search in Google Scholar

31. Ulaeto, S. B., Mathew, G. M., Pancrecious, J. K., Nair, J. B., Rajan, T. P. D., Maiti, K. K., Pai, B. C. Biogenic Ag nanoparticles from neem extract: their structural evaluation and antimicrobial effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomater. Sci. Eng. 2019, 6, 235–245, https://doi.org/10.1021/acsbiomaterials.9b01257.Search in Google Scholar PubMed

32. Chinnaswamy, G., Chandrasekharan, S., Koh, T. W., Bhatnagar, S. Synthesis, characterization, antibacterial and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front. Microbiol. 2021, 12, 611560, https://doi.org/10.3389/fmicb.2021.611560.Search in Google Scholar PubMed PubMed Central

33. Gola, D., Bhatt, N., Bajpai, M., Singh, A., Arya, A., Chauhan, N., Srivastava, K. S., Agrawal, Y., Tyagi, P. K. Silver nanoparticles for enhanced dye degradation. Curr. Res. Green Sustainable Chem. 2021, 4, 100132, https://doi.org/10.1016/j.crgsc.2021.100132.Search in Google Scholar

34. Sengupta, A., Sarkar, A. Synthesis and characterization of nanoparticles from neem leaves and banana peels: a green prospect for dye degradation in wastewater. Ecotoxicol. Environ. Saf. 2022, 31, 537–548, https://doi.org/10.1007/s10646-021-02414-5.Search in Google Scholar PubMed

35. Ghosh, T. Biosynthesis of silver nanoparticles and its utilization in dye decomposition for a clean environment: a step towards sustainable development. Curr. World Environ. 2022, 17, 341–348, https://doi.org/10.12944/cwe.17.2.6.Search in Google Scholar

36. Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., Lisitsyn, A. B. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics 2021, 10, 884, https://doi.org/10.3390/antibiotics10070884.Search in Google Scholar PubMed PubMed Central

37. Yilleng, T. M., Samuel, N. Y., Stephen, D., Akande, J. A., Agendeh, Z. M., Madaki, L. A. Biosynthesis of copper and iron nanoparticles using neem (Azadirachta indica) leaf extract and their anti-bacterial activity. J. Appl. Sci. Environ. Manage. 2020, 24, 1987–1991, https://doi.org/10.4314/jasem.v24i11.20.Search in Google Scholar

38. Zambri, N. D. S., Taib, N. I., Abdul Latif, F., Mohamed, Z. Utilization of neem leaf extract on biosynthesis of iron oxide nanoparticles. Molecules 2019, 24, 3803, https://doi.org/10.3390/molecules24203803.Search in Google Scholar PubMed PubMed Central

39. Devatha, C. P., Jagadeesh, K., Patil, M. Effect of green synthesized iron nanoparticles by Azardirachta indica in different proportions on antibacterial activity. Environ. Nanotechnol., Monit. Manage. 2018, 9, 85–94, https://doi.org/10.1016/j.enmm.2017.11.007.Search in Google Scholar

40. Kasthuri, G., Reddy, A. N., Roopa, P. M., Zamare, D. K. Application of green synthesized iron nanoparticles for enhanced antimicrobial activity of selected traditional and commonly exploited drug amoxicillin against Streptococcus mutans. Biosci., Biotechnol. Res. Asia 2017, 14, 1135–1141, https://doi.org/10.13005/bbra/2552.Search in Google Scholar

41. Asghar, K., Qasim, M., Das, D. Synthesis and characterization of neem gum coated superparamagnetic nanoparticle based novel nanobiocomposite. Ceram. Int. 2019, 45, 25069–25077, https://doi.org/10.1016/j.ceramint.2019.04.050.Search in Google Scholar

42. Alagu, T., Karuppasamy, P., Anbuganthi, P., Lingasamy, P., Jeyram, R., Kuppamuthu, K., Soundararajan, N. Synthesis and impregnation of Fe2O3 nanoparticles on cellulose paper and sodium alginate films for the preservation of fruit and vegetables. J. Microbiol., Biotechnol. Food Sci. 2020, 9, 1166–1169, https://doi.org/10.15414/jmbfs.2020.9.6.1166-1169.Search in Google Scholar

43. Ahmad, H., Rajagopal, K., Shah, A. H., Bhat, A. H., Venugopal, K. Study of bio-fabrication of iron nanoparticles and their fungicidal property against phytopathogens of apple orchards. IET Nanobiotechnol. 2017, 11, 230–235, https://doi.org/10.1049/iet-nbt.2015.0061.Search in Google Scholar PubMed PubMed Central

44. Pal, P., Syed, S. S., Banat, F. Soxhlet extraction of neem pigment to synthesize iron oxide nanoparticles and its catalytic and adsorption activity for methylene blue removal. BioNanoScience 2017, 7, 546–553, https://doi.org/10.1007/s12668-017-0420-4.Search in Google Scholar

45. Jain, M., Yadav, M., Kohout, T., Lahtinen, M., Garg, V. K., Sillanpää, M. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(vi), Cu(ii) and Cd(ii) ions from aqueous solution. Water Resour. Ind. 2018, 20, 54–74, https://doi.org/10.1016/j.wri.2018.10.001.Search in Google Scholar

46. Sohail, M. F., Rehman, M., Hussain, S. Z., Huma, Z. E., Shahnaz, G., Qureshi, O. S., Khalid, K., Mirza, S., Husaain, I., Webster, T. J. Green synthesis of zinc oxide nanoparticles by neem extract as multi-facet therapeutic agents. J. Drug Delivery Sci. Technol. 2020, 59, 101911, https://doi.org/10.1016/j.jddst.2020.101911.Search in Google Scholar

47. Vijayakumar, S., Divya, M., Vaseeharan, B., Ranjan, S., Kalaiselvi, V., Dasgupta, N., Chen, J., Durán-Lara, E. F. Biogenic preparation and characterization of ZnO nanoparticles from natural polysaccharide Azadirachta indica L. (neem gum) and its clinical implications. J. Cluster Sci. 2021, 32, 983–993, https://doi.org/10.1007/s10876-020-01863-y.Search in Google Scholar

48. Madhubala, V., Kalaivani, T. Phyto and hydrothermal synthesis of Fe3O4@ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies. Appl. Surf. Sci. 2018, 449, 584–590, https://doi.org/10.1016/j.apsusc.2017.12.105.Search in Google Scholar

49. Oudhia, A., Kulkarni, P., Sharma, S. Green synthesis of ZnO nanotubes for bioapplications. Int. J. Curr. Eng. Technol. 2015, 0, 280–281.Search in Google Scholar

50. Gnanasangeetha, D., Sarala, D. T. Facile and eco-friendly method for the synthesis of zinc oxide nanoparticles using Azadirachta and Emblica. Int. J. Res. Pharm. Sci. 2014, 5, 2866–2873.Search in Google Scholar

51. Vecchio, M. G., Loganes, C., Minto, C. Beneficial and healthy properties of eucalyptus plants: a great potential use. Open Agric. J. 2016, 10, 52–57, https://doi.org/10.2174/1874331501610010052.Search in Google Scholar

52. Luís, Â., Neiva, D., Pereira, H., Gominho, J., Domingues, F., Duarte, A. P. Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 2014, 19, 16428–16446, https://doi.org/10.3390/molecules191016428.Search in Google Scholar PubMed PubMed Central

53. Mo, Y. Y., Tang, Y. K., Wang, S. Y., Lin, J. M., Zhang, H. B., Luo, D. Y. Green synthesis of silver nanoparticles using eucalyptus leaf extract. Mater. Lett. 2015, 144, 165–167, https://doi.org/10.1016/j.matlet.2015.01.004.Search in Google Scholar

54. Munir, H., Mumtaz, A., Rashid, R., Najeeb, J., Zubair, M. T., Munir, S., Bilal, M., Cheng, H. J. Eucalyptus camaldulensis gum as a green matrix to fabrication of zinc and silver nanoparticles: characterization and novel prospects as antimicrobial and dye-degrading agents. J. Mater. Res. Technol. 2020, 9, 15513–15524, https://doi.org/10.1016/j.jmrt.2020.11.026.Search in Google Scholar

55. Balčiūnaitienė, A., Liaudanskas, M., Puzerytė, V., Viškelis, J., Janulis, V., Viškelis, P., Griškonis, E., Jankauskaitė, V. Eucalyptus globulus and Salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent. Plants 2022, 11, 1085, https://doi.org/10.3390/plants11081085.Search in Google Scholar PubMed PubMed Central

56. El-Rahman, A. F. A., Mohammad, T. G. M. Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. J. Appl. Sci. Res. 2013, 9, 6437–6440.Search in Google Scholar

57. Sulaiman, G. M., Mohammed, W. H., Marzoog, T. R., Al-Amiery, A. A. A., Kadhum, A. A. H., Mohamad, A. B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63, https://doi.org/10.1016/s2221-1691(13)60024-6.Search in Google Scholar

58. Rossos, A. K., Banti, C. N., Rapti, P. K., Papachristodoulou, C., Sainis, I., Zoumpoulakis, P., Mavromoustakos, T., Hadjikakou, S. K. Silver nanoparticles using eucalyptus or willow extracts (AgNPs) as contact lens hydrogel components to reduce the risk of microbial infection. Molecules 2021, 26, 5022, https://doi.org/10.3390/molecules26165022.Search in Google Scholar PubMed PubMed Central

59. Lethongka, S., Paosen, S., Bilhman, S., Dumjun, K., Wunnoo, S., Chooji, S., Siri, R., Daengngam, C., Voravuthikunchai, S. P., Bejrananda, T. Eucalyptus-mediated synthesized silver nanoparticles-coated urinary catheter inhibits microbial migration and biofilm formation. Nanomaterials 2022, 12, 4059, https://doi.org/10.3390/nano12224059.Search in Google Scholar PubMed PubMed Central

60. Zein, R., Alghoraibi, I., Soukkarieh, C., Salman, A., Alahmad, A. In-vitro anticancer activity against Caco-2 cell line of colloidal nano-silver synthesized using aqueous extract of Eucalyptus camaldulensis leaves. Heliyon 2020, 6, e04594, https://doi.org/10.1016/j.heliyon.2020.e04594.Search in Google Scholar PubMed PubMed Central

61. Salih, T. A., Hassan, K. T., Majeed, S. R., Ibraheem, I. J., Hassan, O. M., Obaid, A. S. In vitro scolicidal activity of synthesised silver nanoparticles from aqueous plant extract against Echinococcus granulosus. Biotechnol. Rep. 2020, 28, e00545, https://doi.org/10.1016/j.btre.2020.e00545.Search in Google Scholar PubMed PubMed Central

62. Fabiyi, O., Olatunji, G., Atolani, O., Olawuyi, O. Preparation of bio-nematicidal nanoparticles of Eucalyptus officinalis for the control of cyst nematode (Heterodera sacchari). J. Anim. Plant Sci. 2020, 30, 1172–1177.10.36899/JAPS.2020.5.0134Search in Google Scholar

63. Nayab, D. E., Akhtar, S. Green synthesized silver nanoparticles from eucalyptus leaves can enhance shelf life of banana without penetrating in pulp. PLoS One 2023, 18, e0281675, https://doi.org/10.1371/journal.pone.0281675.Search in Google Scholar PubMed PubMed Central

64. Rabeea, M., Owaid, M. N., Rabeea, M. A., Muslim, R. F., Nakharin, W. S. Synthesis and characterization of silver nanoparticles by natural organic compounds extracted from Eucalyptus leaves and their role in the catalytic degradation of methylene blue dye. Songklanakarin J. Sci. Technol. 2021, 43, 14–23.Search in Google Scholar

65. Andrade-Zavaleta, K., Chacon-Laiza, Y., Asmat-Campos, D., Raquel-Checca, N. Green synthesis of superparamagnetic iron oxide nanoparticles with Eucalyptus globulus extract and their application in the removal of heavy metals from agricultural soil. Molecules 2022, 27, 1367, https://doi.org/10.3390/molecules27041367.Search in Google Scholar PubMed PubMed Central

66. Kien, P. H., Khamphone, Y., Trang, G. T. T. Study of effect of size on iron nanoparticle by molecular dynamics simulation. HighTech Innovation J. 2021, 2, 158–167; https://doi.org/10.28991/hij-2021-02-03-01.Search in Google Scholar

67. Kamath, V., Chandra, P., Jeppu, G. P. Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. Int. J. Phytorem. 2020, 22, 1278–1294, https://doi.org/10.1080/15226514.2020.1765139.Search in Google Scholar PubMed

68. Gan, L., Lu, Z., Cao, D., Chen, Z. Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater. Sci. Eng., C 2018, 82, 41–45, https://doi.org/10.1016/j.msec.2017.08.073.Search in Google Scholar PubMed

69. Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., Doan-Nguyen, V., Kang, Y., Engheta, N., Kagan, C. R., Murray, C. B. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817, https://doi.org/10.1021/nn300315j.Search in Google Scholar PubMed

70. Vigderman, L., Khanal, B. P., Zubarev, E. R. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841, https://doi.org/10.1002/adma.201201690.Search in Google Scholar PubMed

71. Jin, Y., Liu, F., Tong, M., Hou, Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. J. Hazard. Mater. 2012, 227, 461–468, https://doi.org/10.1016/j.jhazmat.2012.05.004.Search in Google Scholar PubMed

72. Vitta, Y., Figueroa, M., Calderon, M., Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Technol. 2020, 3, 97–103, https://doi.org/10.1016/j.mset.2019.10.014.Search in Google Scholar

73. Sangami, S., Manu, B. Catalytic efficiency of laterite-based FeNPs for the mineralization of mixture of herbicides in water. Environ. Technol. 2018, 40, 2671–2683, https://doi.org/10.1080/09593330.2018.1449899.Search in Google Scholar PubMed

74. Wang, T., Lin, J., Chen, Z., Megharaj, M., Naidu, R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Cleaner Prod. 2014, 83, 413–419, https://doi.org/10.1016/j.jclepro.2014.07.006.Search in Google Scholar

75. Madhavi, V., Prasad, T. N. V. K. V., Reddy, A. V. B., Reddy, B. R., Madhavi, G. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim. Acta, Part A 2013, 116, 17–25, https://doi.org/10.1016/j.saa.2013.06.045.Search in Google Scholar PubMed

76. Longano, D., Ditaranto, N., Sabbatini, L., Torsi, L., Cioffi, N. Synthesis and antimicrobial activity of copper nanomaterials. Nano-Antimicrobials 2011, 71, 85–117; https://doi.org/10.1007/978-3-642-24428-5_3.Search in Google Scholar

77. Aderibigbe, B. A. Metal-based nanoparticles for the treatment of infectious diseases. Molecules 2017, 22, 1370, https://doi.org/10.3390/molecules22081370.Search in Google Scholar PubMed PubMed Central

78. Santhoshkumar, J., Agarwal, H., Menon, S., Rajeshkumar, S., Kumar, S. V. A biological synthesis of copper nanoparticles and its potential applications. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier Sci.: India, 9, 2019; pp. 199–221.10.1016/B978-0-08-102579-6.00009-5Search in Google Scholar

79. Iliger, K. S., Sofi, T. A., Bhat, N. A., Ahanger, F. A., Sekhar, J. C., Elhendi, A. Z., Al-Huqail, A. A., Khan, F. Copper nanoparticles: green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J. Biol. Sci. 2021, 28, 1477–1486, https://doi.org/10.1016/j.sjbs.2020.12.003.Search in Google Scholar PubMed PubMed Central

80. Tyagi, A. K., Malik, A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011, 126, 228–235, https://doi.org/10.1016/j.foodchem.2010.11.002.Search in Google Scholar

81. Jerbi, A., Derbali, A., Elfeki, A., Kammoun, M. Essential oil composition and biological activities of Eucalyptus globulus leaves extracts from Tunisia. J. Essent. Oil Bear. Plants 2017, 20, 438–448, https://doi.org/10.1080/0972060x.2017.1304832.Search in Google Scholar

82. Saka, W. A., Akhigbe, R. E., Ajayi, A. F., Ajayi, L. O., Nwabuzor, O. E. Anti-diabetic and antioxidant potentials of aqueous extract of Eucalyptus globulus in experimentally-induced diabetic rats. Afr. J. Tradit., Complementary Altern. Med. 2017, 14, 20–26, https://doi.org/10.21010/ajtcam.v14i6.3.Search in Google Scholar

83. Kolekar, R., Bhade, S., Kumar, R., Reddy, P., Singh, R., Pradeep Kumar, K. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus sp. plant leaves. Curr. Sci. 2015, 109, 255–257.Search in Google Scholar

84. Alhalili, Z. Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus globulus leaf extract: adsorption and design of experiments. Arabian J. Chem. 2022, 15, 103739, https://doi.org/10.1016/j.arabjc.2022.103739.Search in Google Scholar

85. Jaji, N.-D., Lee, H. L., Hussin, M. H., Akil, H. M., Zakaria, M. R., Othman, M. B. H. Advanced nickel nanoparticles technology: from synthesis to applications. Nanotechnol. Rev. 2020, 9, 1456–1480, https://doi.org/10.1515/ntrev-2020-0109.Search in Google Scholar

86. Saleem, S., Ahmed, B., Khan, M. S., Al-Shaeri, M., Musarrat, J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb. Pathog. 2017, 111, 375–387, https://doi.org/10.1016/j.micpath.2017.09.019.Search in Google Scholar PubMed

87. Kaur, H., Sodhi, R. S., Kaur, G. Eucalyptus modulated biosynthesis of nickel oxide nanoparticles with enhanced antibacterial and photo-catalytic activities. Inorg. Nano-Met. Chem. 2022, 0, 1–9; https://doi.org/10.1080/24701556.2021.2025090.Search in Google Scholar

Received: 2023-06-06
Accepted: 2023-10-11
Published Online: 2023-11-08
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0271/html?srsltid=AfmBOorIDfotn-K_lJyJgGG7k-Y-u5DljqtXTrs0RmHI7Hf1kOE3t04l
Scroll to top button