A review on application of green nanoparticles from neem and eucalyptus
-
Akhila Narayanankutty
Akhila NarayanankuttyDepartment of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, IndiaSearch for this author in:Anuradha SharmaDepartment of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, IndiaSearch for this author in:Amrita SinghDepartment of Biotechnology and Medical Engineering, NIT Rourkela, Rourkela, Odhisa, IndiaSearch for this author in:
Abstract
Nanotechnology is concerned with the creation and use of nanoscale materials. The synthetic methods for nanoparticles are associated with environmental hazards. This review begins with the need for synthesizing nanoparticles biogenically. Hence, it describes the green synthesis of different metal nanoparticles using the plant extracts of neem (Azadirachta indica), and eucalyptus (Eucalyptus globulus) as reductant and stabilizers. Importantly, this review summarizes the medical applications of green nanoparticles, made using plants with medicinal values. The environmental uses of the same nanoparticles are also explored. There is immense literature where nanoparticle-based applications in medicine and environment concentrates more on chemical or physical methods, we hope this review would help reader to focus more on environment friendly synthesis of nanoparticles and their important roles.
Acknowledgements
The authors are thankful to the management of Lovely Professional University for providing the necessary facilities for the completion of the review article.
-
Research ethics: Not applicable.
-
Author contributions: Akhila contributed in the writing of the review article. Dr Amrita Singh designed, written, reviewed, edited and conceptualized the work. Dr Anuradha Sharma edited and reviewed the work.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. McNeil, S. E. Nanotechnology for the biologist. J. Leukocyte Biol. 2005, 78, 585–594, https://doi.org/10.1189/jlb.0205074.Search in Google Scholar PubMed
2. Khan, N., Ali, S., Latif, S., Mehmood, A. Biological synthesis of nanoparticles and their applications in sustainable agriculture production. Nat. Sci. 2022, 14, 226–234, https://doi.org/10.4236/ns.2022.146022.Search in Google Scholar
3. Patil, N., Bhaskar, R., Vyavhare, V., Dhadge, R., Khaire, V., Patil, Y. Overview on methods of synthesis of nanoparticles. Int. J. Curr. Pharm. Res. 2021, 13, 11–16, https://doi.org/10.22159/ijcpr.2021v13i2.41556.Search in Google Scholar
4. Ijaz, I., Gilani, E., Nazir, A., Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245, https://doi.org/10.1080/17518253.2020.1802517.Search in Google Scholar
5. Surender, Gahlot, A. Physical methods of nanoparticles preparation – an overview. Int. J. Adv. Eng. Manag. 2021, 3, 812–816.Search in Google Scholar
6. Satyanarayana, T., Sudhakar Reddy, S. A review on chemical and physical synthesis methods of nanomaterials. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2885–2889; https://doi.org/10.22214/ijraset.2018.1396.Search in Google Scholar
7. Iravani, S., Korbekandi, H., Mirmohammadi, S. V., Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Int. J. Res. Pharm. Sci. 2014, 9, 385–406.Search in Google Scholar
8. Nie, P., Zhao, Y., Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: a review. Ecotoxicol. Environ. Saf. 2023, 253, 114636; https://doi.org/10.1016/j.ecoenv.2023.114636.Search in Google Scholar PubMed
9. Yugandhar, P., Haribabu, R., Savithramma, N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech 2015, 5, 1031–1039, https://doi.org/10.1007/s13205-015-0307-4.Search in Google Scholar PubMed PubMed Central
10. Kuppusamy, P., Yusoff, M. M., Maniam, G. P., Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm. J. 2016, 24, 473–484, https://doi.org/10.1016/j.jsps.2014.11.013.Search in Google Scholar PubMed PubMed Central
11. Moulton, M. C., Braydich-Stolle, L. K., Nadagouda, M. N., Kunzelman, S., Hussain, S. M., Varma, R. S. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2010, 2, 763–770, https://doi.org/10.1039/c0nr00046a.Search in Google Scholar PubMed
12. Nayak, S., Bhat, M. P., Udayashankar, A. C., Lakshmeesha, T. R., Geetha, N., Jogaijah, S. Biosynthesis and characterization of Dillenia indica-mediated silver nanoparticles and their biological activity. Appl. Organomet. Chem. 2020, 34, 1–9; https://doi.org/10.1002/aoc.5567.Search in Google Scholar
13. Mikhailova, E. O. Silver nanoparticles: mechanism of action and probable bio-application. J. Funct. Biomater. 2022, 11, 84, https://doi.org/10.3390/jfb11040084.Search in Google Scholar PubMed PubMed Central
14. Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., Jose-Yacaman, M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 2003, 19, 1357–1361, https://doi.org/10.1021/la020835i.Search in Google Scholar
15. Gopinath, K., Gowri, S., Arumugam, A. Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J. Nanostruct. Chem. 2013, 3, 1–7, https://doi.org/10.1186/2193-8865-3-68.Search in Google Scholar
16. Lin, P. C., Lin, S., Wang, P. C., Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014, 32, 711–726, https://doi.org/10.1016/j.biotechadv.2013.11.006.Search in Google Scholar PubMed PubMed Central
17. Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., Brestic, M. Application of silicon nanoparticles in agriculture. 3 Biotech 2019, 9, 1–11, https://doi.org/10.1007/s13205-019-1626-7.Search in Google Scholar PubMed PubMed Central
18. Rastegari, E., Hsiao, Y. J., Lai, W. Y., Lai, Y. H., Yang, T. C., Chen, S. J., Huang, P. I., Chiou, S. H., Mou, C. Y., Chien, Y. An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics 2021, 13, 1067, https://doi.org/10.3390/pharmaceutics13071067.Search in Google Scholar PubMed PubMed Central
19. Novi, V. T., Gonzalez, A., Brockgreitens, J., Abbas, A. Highly efficient and durable antimicrobial nanocomposite textiles. Sci. Rep. 2022, 12, 17332, https://doi.org/10.1038/s41598-022-22370-2.Search in Google Scholar PubMed PubMed Central
20. Bapat, R. A., Chaubal, T. V., Joshi, C. P., Bapat, P. R., Choudhury, H., Pandey, M., Gorain, B., Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng., C 2018, 91, 881–898, https://doi.org/10.1016/j.msec.2018.05.069.Search in Google Scholar PubMed
21. Araújo, R., Meira Castro, A. C., Fiúza, A. The use of nanoparticles in soil and water remediation processes. Mater. Today: Proc. 2015, 2, 315–320, https://doi.org/10.1016/j.matpr.2015.04.055.Search in Google Scholar
22. Mansoori, G. A., Rohani Bastami, T., Ahmadpur, A., Eshaghi, Z. Environmental application of nanotechnology. In Annual Review of Nano Research; World Scientific Publishing Co Pte Ltd, Chicago, USA 2008; pp. 439–493, Ch. 10.10.1142/9789812790248_0010Search in Google Scholar
23. Wan Ismail, W. N., Irwan Syah, M. I. A., Abd Muhet, N. H., Abu Bakar, N. H., Mohd Yusop, H., Abu Samah, N. Adsorption behavior of heavy metal ions by hybrid inulin-TEOS for water treatment. Civ. Eng. J. 2022, 8, 1787–1798; https://doi.org/10.28991/cej-2022-08-09-03.Search in Google Scholar
24. Hashem, M. A., Payel, S., Hasan, M., Momen, M. A., Sahen, M. S. Green preservation of goatskin to deplete chloride from tannery wastewater. HighTech Innovation J. 2021, 2, 99–107; https://doi.org/10.28991/hij-2021-02-02-03.Search in Google Scholar
25. Varadavenkatesan, T., Selvaraj, R., Vinayagam, R. Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J. Mol. Liq. 2016, 221, 1063–1070, https://doi.org/10.1016/j.molliq.2016.06.064.Search in Google Scholar
26. Verma, A., Mehata, M. S. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9, 109–115, https://doi.org/10.1016/j.jrras.2015.11.001.Search in Google Scholar
27. Song, J. Y., Kim, B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84, https://doi.org/10.1007/s00449-008-0224-6.Search in Google Scholar PubMed
28. Mishra, A., Kaushik, N. K., Sardar, M., Sahal, D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf., B 2013, 111, 713–718, https://doi.org/10.1016/j.colsurfb.2013.06.036.Search in Google Scholar PubMed
29. Subramani, K., Murugan, V., Shanmugam, B. K., Rangaraj, S., Palanisamy, M., Venkatachalam, R., Suresh, V. An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem). J. Alloys Compd. 2017, 723, 698–707, https://doi.org/10.1016/j.jallcom.2017.06.242.Search in Google Scholar
30. Zainurin, M. A. N., Zainol, I. Biogenic synthesis of silver nanoparticles using neem leaf extract as reducing agent and hydrolyzed collagen as stabilizing agent. Malays. J. Microsc. 2022, 18, 215–225.Search in Google Scholar
31. Ulaeto, S. B., Mathew, G. M., Pancrecious, J. K., Nair, J. B., Rajan, T. P. D., Maiti, K. K., Pai, B. C. Biogenic Ag nanoparticles from neem extract: their structural evaluation and antimicrobial effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomater. Sci. Eng. 2019, 6, 235–245, https://doi.org/10.1021/acsbiomaterials.9b01257.Search in Google Scholar PubMed
32. Chinnaswamy, G., Chandrasekharan, S., Koh, T. W., Bhatnagar, S. Synthesis, characterization, antibacterial and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front. Microbiol. 2021, 12, 611560, https://doi.org/10.3389/fmicb.2021.611560.Search in Google Scholar PubMed PubMed Central
33. Gola, D., Bhatt, N., Bajpai, M., Singh, A., Arya, A., Chauhan, N., Srivastava, K. S., Agrawal, Y., Tyagi, P. K. Silver nanoparticles for enhanced dye degradation. Curr. Res. Green Sustainable Chem. 2021, 4, 100132, https://doi.org/10.1016/j.crgsc.2021.100132.Search in Google Scholar
34. Sengupta, A., Sarkar, A. Synthesis and characterization of nanoparticles from neem leaves and banana peels: a green prospect for dye degradation in wastewater. Ecotoxicol. Environ. Saf. 2022, 31, 537–548, https://doi.org/10.1007/s10646-021-02414-5.Search in Google Scholar PubMed
35. Ghosh, T. Biosynthesis of silver nanoparticles and its utilization in dye decomposition for a clean environment: a step towards sustainable development. Curr. World Environ. 2022, 17, 341–348, https://doi.org/10.12944/cwe.17.2.6.Search in Google Scholar
36. Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., Lisitsyn, A. B. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics 2021, 10, 884, https://doi.org/10.3390/antibiotics10070884.Search in Google Scholar PubMed PubMed Central
37. Yilleng, T. M., Samuel, N. Y., Stephen, D., Akande, J. A., Agendeh, Z. M., Madaki, L. A. Biosynthesis of copper and iron nanoparticles using neem (Azadirachta indica) leaf extract and their anti-bacterial activity. J. Appl. Sci. Environ. Manage. 2020, 24, 1987–1991, https://doi.org/10.4314/jasem.v24i11.20.Search in Google Scholar
38. Zambri, N. D. S., Taib, N. I., Abdul Latif, F., Mohamed, Z. Utilization of neem leaf extract on biosynthesis of iron oxide nanoparticles. Molecules 2019, 24, 3803, https://doi.org/10.3390/molecules24203803.Search in Google Scholar PubMed PubMed Central
39. Devatha, C. P., Jagadeesh, K., Patil, M. Effect of green synthesized iron nanoparticles by Azardirachta indica in different proportions on antibacterial activity. Environ. Nanotechnol., Monit. Manage. 2018, 9, 85–94, https://doi.org/10.1016/j.enmm.2017.11.007.Search in Google Scholar
40. Kasthuri, G., Reddy, A. N., Roopa, P. M., Zamare, D. K. Application of green synthesized iron nanoparticles for enhanced antimicrobial activity of selected traditional and commonly exploited drug amoxicillin against Streptococcus mutans. Biosci., Biotechnol. Res. Asia 2017, 14, 1135–1141, https://doi.org/10.13005/bbra/2552.Search in Google Scholar
41. Asghar, K., Qasim, M., Das, D. Synthesis and characterization of neem gum coated superparamagnetic nanoparticle based novel nanobiocomposite. Ceram. Int. 2019, 45, 25069–25077, https://doi.org/10.1016/j.ceramint.2019.04.050.Search in Google Scholar
42. Alagu, T., Karuppasamy, P., Anbuganthi, P., Lingasamy, P., Jeyram, R., Kuppamuthu, K., Soundararajan, N. Synthesis and impregnation of Fe2O3 nanoparticles on cellulose paper and sodium alginate films for the preservation of fruit and vegetables. J. Microbiol., Biotechnol. Food Sci. 2020, 9, 1166–1169, https://doi.org/10.15414/jmbfs.2020.9.6.1166-1169.Search in Google Scholar
43. Ahmad, H., Rajagopal, K., Shah, A. H., Bhat, A. H., Venugopal, K. Study of bio-fabrication of iron nanoparticles and their fungicidal property against phytopathogens of apple orchards. IET Nanobiotechnol. 2017, 11, 230–235, https://doi.org/10.1049/iet-nbt.2015.0061.Search in Google Scholar PubMed PubMed Central
44. Pal, P., Syed, S. S., Banat, F. Soxhlet extraction of neem pigment to synthesize iron oxide nanoparticles and its catalytic and adsorption activity for methylene blue removal. BioNanoScience 2017, 7, 546–553, https://doi.org/10.1007/s12668-017-0420-4.Search in Google Scholar
45. Jain, M., Yadav, M., Kohout, T., Lahtinen, M., Garg, V. K., Sillanpää, M. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(vi), Cu(ii) and Cd(ii) ions from aqueous solution. Water Resour. Ind. 2018, 20, 54–74, https://doi.org/10.1016/j.wri.2018.10.001.Search in Google Scholar
46. Sohail, M. F., Rehman, M., Hussain, S. Z., Huma, Z. E., Shahnaz, G., Qureshi, O. S., Khalid, K., Mirza, S., Husaain, I., Webster, T. J. Green synthesis of zinc oxide nanoparticles by neem extract as multi-facet therapeutic agents. J. Drug Delivery Sci. Technol. 2020, 59, 101911, https://doi.org/10.1016/j.jddst.2020.101911.Search in Google Scholar
47. Vijayakumar, S., Divya, M., Vaseeharan, B., Ranjan, S., Kalaiselvi, V., Dasgupta, N., Chen, J., Durán-Lara, E. F. Biogenic preparation and characterization of ZnO nanoparticles from natural polysaccharide Azadirachta indica L. (neem gum) and its clinical implications. J. Cluster Sci. 2021, 32, 983–993, https://doi.org/10.1007/s10876-020-01863-y.Search in Google Scholar
48. Madhubala, V., Kalaivani, T. Phyto and hydrothermal synthesis of Fe3O4@ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies. Appl. Surf. Sci. 2018, 449, 584–590, https://doi.org/10.1016/j.apsusc.2017.12.105.Search in Google Scholar
49. Oudhia, A., Kulkarni, P., Sharma, S. Green synthesis of ZnO nanotubes for bioapplications. Int. J. Curr. Eng. Technol. 2015, 0, 280–281.Search in Google Scholar
50. Gnanasangeetha, D., Sarala, D. T. Facile and eco-friendly method for the synthesis of zinc oxide nanoparticles using Azadirachta and Emblica. Int. J. Res. Pharm. Sci. 2014, 5, 2866–2873.Search in Google Scholar
51. Vecchio, M. G., Loganes, C., Minto, C. Beneficial and healthy properties of eucalyptus plants: a great potential use. Open Agric. J. 2016, 10, 52–57, https://doi.org/10.2174/1874331501610010052.Search in Google Scholar
52. Luís, Â., Neiva, D., Pereira, H., Gominho, J., Domingues, F., Duarte, A. P. Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 2014, 19, 16428–16446, https://doi.org/10.3390/molecules191016428.Search in Google Scholar PubMed PubMed Central
53. Mo, Y. Y., Tang, Y. K., Wang, S. Y., Lin, J. M., Zhang, H. B., Luo, D. Y. Green synthesis of silver nanoparticles using eucalyptus leaf extract. Mater. Lett. 2015, 144, 165–167, https://doi.org/10.1016/j.matlet.2015.01.004.Search in Google Scholar
54. Munir, H., Mumtaz, A., Rashid, R., Najeeb, J., Zubair, M. T., Munir, S., Bilal, M., Cheng, H. J. Eucalyptus camaldulensis gum as a green matrix to fabrication of zinc and silver nanoparticles: characterization and novel prospects as antimicrobial and dye-degrading agents. J. Mater. Res. Technol. 2020, 9, 15513–15524, https://doi.org/10.1016/j.jmrt.2020.11.026.Search in Google Scholar
55. Balčiūnaitienė, A., Liaudanskas, M., Puzerytė, V., Viškelis, J., Janulis, V., Viškelis, P., Griškonis, E., Jankauskaitė, V. Eucalyptus globulus and Salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent. Plants 2022, 11, 1085, https://doi.org/10.3390/plants11081085.Search in Google Scholar PubMed PubMed Central
56. El-Rahman, A. F. A., Mohammad, T. G. M. Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. J. Appl. Sci. Res. 2013, 9, 6437–6440.Search in Google Scholar
57. Sulaiman, G. M., Mohammed, W. H., Marzoog, T. R., Al-Amiery, A. A. A., Kadhum, A. A. H., Mohamad, A. B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63, https://doi.org/10.1016/s2221-1691(13)60024-6.Search in Google Scholar
58. Rossos, A. K., Banti, C. N., Rapti, P. K., Papachristodoulou, C., Sainis, I., Zoumpoulakis, P., Mavromoustakos, T., Hadjikakou, S. K. Silver nanoparticles using eucalyptus or willow extracts (AgNPs) as contact lens hydrogel components to reduce the risk of microbial infection. Molecules 2021, 26, 5022, https://doi.org/10.3390/molecules26165022.Search in Google Scholar PubMed PubMed Central
59. Lethongka, S., Paosen, S., Bilhman, S., Dumjun, K., Wunnoo, S., Chooji, S., Siri, R., Daengngam, C., Voravuthikunchai, S. P., Bejrananda, T. Eucalyptus-mediated synthesized silver nanoparticles-coated urinary catheter inhibits microbial migration and biofilm formation. Nanomaterials 2022, 12, 4059, https://doi.org/10.3390/nano12224059.Search in Google Scholar PubMed PubMed Central
60. Zein, R., Alghoraibi, I., Soukkarieh, C., Salman, A., Alahmad, A. In-vitro anticancer activity against Caco-2 cell line of colloidal nano-silver synthesized using aqueous extract of Eucalyptus camaldulensis leaves. Heliyon 2020, 6, e04594, https://doi.org/10.1016/j.heliyon.2020.e04594.Search in Google Scholar PubMed PubMed Central
61. Salih, T. A., Hassan, K. T., Majeed, S. R., Ibraheem, I. J., Hassan, O. M., Obaid, A. S. In vitro scolicidal activity of synthesised silver nanoparticles from aqueous plant extract against Echinococcus granulosus. Biotechnol. Rep. 2020, 28, e00545, https://doi.org/10.1016/j.btre.2020.e00545.Search in Google Scholar PubMed PubMed Central
62. Fabiyi, O., Olatunji, G., Atolani, O., Olawuyi, O. Preparation of bio-nematicidal nanoparticles of Eucalyptus officinalis for the control of cyst nematode (Heterodera sacchari). J. Anim. Plant Sci. 2020, 30, 1172–1177.10.36899/JAPS.2020.5.0134Search in Google Scholar
63. Nayab, D. E., Akhtar, S. Green synthesized silver nanoparticles from eucalyptus leaves can enhance shelf life of banana without penetrating in pulp. PLoS One 2023, 18, e0281675, https://doi.org/10.1371/journal.pone.0281675.Search in Google Scholar PubMed PubMed Central
64. Rabeea, M., Owaid, M. N., Rabeea, M. A., Muslim, R. F., Nakharin, W. S. Synthesis and characterization of silver nanoparticles by natural organic compounds extracted from Eucalyptus leaves and their role in the catalytic degradation of methylene blue dye. Songklanakarin J. Sci. Technol. 2021, 43, 14–23.Search in Google Scholar
65. Andrade-Zavaleta, K., Chacon-Laiza, Y., Asmat-Campos, D., Raquel-Checca, N. Green synthesis of superparamagnetic iron oxide nanoparticles with Eucalyptus globulus extract and their application in the removal of heavy metals from agricultural soil. Molecules 2022, 27, 1367, https://doi.org/10.3390/molecules27041367.Search in Google Scholar PubMed PubMed Central
66. Kien, P. H., Khamphone, Y., Trang, G. T. T. Study of effect of size on iron nanoparticle by molecular dynamics simulation. HighTech Innovation J. 2021, 2, 158–167; https://doi.org/10.28991/hij-2021-02-03-01.Search in Google Scholar
67. Kamath, V., Chandra, P., Jeppu, G. P. Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. Int. J. Phytorem. 2020, 22, 1278–1294, https://doi.org/10.1080/15226514.2020.1765139.Search in Google Scholar PubMed
68. Gan, L., Lu, Z., Cao, D., Chen, Z. Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater. Sci. Eng., C 2018, 82, 41–45, https://doi.org/10.1016/j.msec.2017.08.073.Search in Google Scholar PubMed
69. Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., Doan-Nguyen, V., Kang, Y., Engheta, N., Kagan, C. R., Murray, C. B. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817, https://doi.org/10.1021/nn300315j.Search in Google Scholar PubMed
70. Vigderman, L., Khanal, B. P., Zubarev, E. R. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841, https://doi.org/10.1002/adma.201201690.Search in Google Scholar PubMed
71. Jin, Y., Liu, F., Tong, M., Hou, Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. J. Hazard. Mater. 2012, 227, 461–468, https://doi.org/10.1016/j.jhazmat.2012.05.004.Search in Google Scholar PubMed
72. Vitta, Y., Figueroa, M., Calderon, M., Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Technol. 2020, 3, 97–103, https://doi.org/10.1016/j.mset.2019.10.014.Search in Google Scholar
73. Sangami, S., Manu, B. Catalytic efficiency of laterite-based FeNPs for the mineralization of mixture of herbicides in water. Environ. Technol. 2018, 40, 2671–2683, https://doi.org/10.1080/09593330.2018.1449899.Search in Google Scholar PubMed
74. Wang, T., Lin, J., Chen, Z., Megharaj, M., Naidu, R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Cleaner Prod. 2014, 83, 413–419, https://doi.org/10.1016/j.jclepro.2014.07.006.Search in Google Scholar
75. Madhavi, V., Prasad, T. N. V. K. V., Reddy, A. V. B., Reddy, B. R., Madhavi, G. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim. Acta, Part A 2013, 116, 17–25, https://doi.org/10.1016/j.saa.2013.06.045.Search in Google Scholar PubMed
76. Longano, D., Ditaranto, N., Sabbatini, L., Torsi, L., Cioffi, N. Synthesis and antimicrobial activity of copper nanomaterials. Nano-Antimicrobials 2011, 71, 85–117; https://doi.org/10.1007/978-3-642-24428-5_3.Search in Google Scholar
77. Aderibigbe, B. A. Metal-based nanoparticles for the treatment of infectious diseases. Molecules 2017, 22, 1370, https://doi.org/10.3390/molecules22081370.Search in Google Scholar PubMed PubMed Central
78. Santhoshkumar, J., Agarwal, H., Menon, S., Rajeshkumar, S., Kumar, S. V. A biological synthesis of copper nanoparticles and its potential applications. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier Sci.: India, 9, 2019; pp. 199–221.10.1016/B978-0-08-102579-6.00009-5Search in Google Scholar
79. Iliger, K. S., Sofi, T. A., Bhat, N. A., Ahanger, F. A., Sekhar, J. C., Elhendi, A. Z., Al-Huqail, A. A., Khan, F. Copper nanoparticles: green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J. Biol. Sci. 2021, 28, 1477–1486, https://doi.org/10.1016/j.sjbs.2020.12.003.Search in Google Scholar PubMed PubMed Central
80. Tyagi, A. K., Malik, A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011, 126, 228–235, https://doi.org/10.1016/j.foodchem.2010.11.002.Search in Google Scholar
81. Jerbi, A., Derbali, A., Elfeki, A., Kammoun, M. Essential oil composition and biological activities of Eucalyptus globulus leaves extracts from Tunisia. J. Essent. Oil Bear. Plants 2017, 20, 438–448, https://doi.org/10.1080/0972060x.2017.1304832.Search in Google Scholar
82. Saka, W. A., Akhigbe, R. E., Ajayi, A. F., Ajayi, L. O., Nwabuzor, O. E. Anti-diabetic and antioxidant potentials of aqueous extract of Eucalyptus globulus in experimentally-induced diabetic rats. Afr. J. Tradit., Complementary Altern. Med. 2017, 14, 20–26, https://doi.org/10.21010/ajtcam.v14i6.3.Search in Google Scholar
83. Kolekar, R., Bhade, S., Kumar, R., Reddy, P., Singh, R., Pradeep Kumar, K. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus sp. plant leaves. Curr. Sci. 2015, 109, 255–257.Search in Google Scholar
84. Alhalili, Z. Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus globulus leaf extract: adsorption and design of experiments. Arabian J. Chem. 2022, 15, 103739, https://doi.org/10.1016/j.arabjc.2022.103739.Search in Google Scholar
85. Jaji, N.-D., Lee, H. L., Hussin, M. H., Akil, H. M., Zakaria, M. R., Othman, M. B. H. Advanced nickel nanoparticles technology: from synthesis to applications. Nanotechnol. Rev. 2020, 9, 1456–1480, https://doi.org/10.1515/ntrev-2020-0109.Search in Google Scholar
86. Saleem, S., Ahmed, B., Khan, M. S., Al-Shaeri, M., Musarrat, J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb. Pathog. 2017, 111, 375–387, https://doi.org/10.1016/j.micpath.2017.09.019.Search in Google Scholar PubMed
87. Kaur, H., Sodhi, R. S., Kaur, G. Eucalyptus modulated biosynthesis of nickel oxide nanoparticles with enhanced antibacterial and photo-catalytic activities. Inorg. Nano-Met. Chem. 2022, 0, 1–9; https://doi.org/10.1080/24701556.2021.2025090.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- A review on application of green nanoparticles from neem and eucalyptus
- Original Papers
- The effects of vitamins C and E on the redox parameters of cytochrome P450 3A4
- A novel near-infrared fluorescent probe for cysteine and application in bioimaging
- Development of TiO2/Al2O3 based Mg composite materials: properties and applications
- Radio-lytic degradation of reactive dyes in aqueous solution: comparative analysis using gamma/H2O2 and UV/H2O2 processes
- Adsorption of pentabromodiphenylether pollutant by metals (Si, Ge, Sn) encapsulated Zn12O12 nanoclusters: a computational study
- DFT, molecular docking and molecular dynamics simulations of 2-imino-4-oxo-1,3-thiazolidine hydrochloride and its activity against Bacillus pasteurii urease
- Potential applications of low-cost Brazilian corn starch as an adsorbent for removing the Acid Violet 19 contaminant from river water
- Silver, copper, and cobalt trimetallic nanoparticles; synthesis, characterization and its application as adsorbent for acid blue 7 dye
- Unraveling the surface activity and micellization characteristics of linear alkyl benzene sulfonate in aqueous solution
Articles in the same Issue
- Frontmatter
- Review Article
- A review on application of green nanoparticles from neem and eucalyptus
- Original Papers
- The effects of vitamins C and E on the redox parameters of cytochrome P450 3A4
- A novel near-infrared fluorescent probe for cysteine and application in bioimaging
- Development of TiO2/Al2O3 based Mg composite materials: properties and applications
- Radio-lytic degradation of reactive dyes in aqueous solution: comparative analysis using gamma/H2O2 and UV/H2O2 processes
- Adsorption of pentabromodiphenylether pollutant by metals (Si, Ge, Sn) encapsulated Zn12O12 nanoclusters: a computational study
- DFT, molecular docking and molecular dynamics simulations of 2-imino-4-oxo-1,3-thiazolidine hydrochloride and its activity against Bacillus pasteurii urease
- Potential applications of low-cost Brazilian corn starch as an adsorbent for removing the Acid Violet 19 contaminant from river water
- Silver, copper, and cobalt trimetallic nanoparticles; synthesis, characterization and its application as adsorbent for acid blue 7 dye
- Unraveling the surface activity and micellization characteristics of linear alkyl benzene sulfonate in aqueous solution