Green synthesis of magnetic Fe3O4 nanoflakes using vegetables extracts and their magnetic, structural and antibacterial properties evaluation
-
Farzana Majid
, Mahwish Bashir , Ismat Bibi, Maida Ayub
, Babar Shahzad Khan , Hamoud H. Somaily , Samiah H. Al-Mijalli , Arif Nazir , Shahid Iqbal and Munawar Iqbal
Abstract
In view of ecobenign nature of green synthesis, iron oxide (Fe3O4) nanoflakes are synthesized via a green route. Three different vegetables (spinach, broccoli and pumpkin) extracts were used for the synthesis of Fe3O4 nanoflakes. X-ray diffraction (XRD) analyses confirm the formation of face centered cubic Fe3O4, while SEM analysis revealed the formation of nanoflakes. FTIR also confirm the Fe–O bands at 478 and 590 (cm−1) and the surface plasmon resonance (SPR) was observed at 280 nm. The magnetic properties were also investigated and Fe3O4 prepared using spinach extract shows relatively low saturation magnetization (Ms) of ∼66 emu/g as compared to pumpkin (105 emu/g) and broccoli (130 emu/g) with ∼25Oe coercivity value. The antibacterial activity of Fe3O4 nanoflakes was studied against Escherichia coli and Pseudomonas aeruginosa and a highly promising antibacterial activity was observed. Results revealed that the Fe3O4 nanoflakes prepared via a green route could have potential applications in biomedical field.
Acknowledgments
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R158), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by King Khalid University through a grant (KKU/RCAMS/22) under the Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia.
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare that they have no conflicts of interest.
-
Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R158), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Data availability: Not applicable.
References
1. Nazir, A., Raza, M., Abbas, M., Abbas, S., Ali, A., Ali, Z., Younas, U., Al-Mijalli, S. H., Iqbal, M. Z. Phys. Chem. 2022, 236, 1203–1217; https://doi.org/10.1515/zpch-2022-0024.Search in Google Scholar
2. Bibi, I., Ghulam, T., Kamal, S., Jilani, K., Alwadai, N., Iqbal, M. Z. Phys. Chem. 2022, 236, 1191–1201; https://doi.org/10.1515/zpch-2021-3128.Search in Google Scholar
3. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar
4. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Search in Google Scholar
5. Rahmat, M., Bhatti, H. N., Rehman, A., Chaudhry, H., Yameen, M., Iqbal, M., Al-Mijalli, S. H., Alwadai, N., Fatima, M., Abbas, M. Arabian Journal of Chemistry 2021, 14, 103415; https://doi.org/10.1016/j.arabjc.2021.103415.Search in Google Scholar
6. Salem, N. M., Awwad, A. M. Chem. Int. 2022, 8, 12–17.Search in Google Scholar
7. Naseer, A., Iqbal, M., Ali, S., Nazir, A., Abbas, M., Ahmad, N. Chem. Int. 2022, 8, 89–94; https://doi.org/10.3233/XST-211047.Search in Google Scholar PubMed PubMed Central
8. Mengistie, T., Alemu, A., Mekonnen, A. Chem. Int. 2018, 4, 130–135.Search in Google Scholar
9. Hassan, F., Mehmood, F., uz Zaman, Q., Iqbal, D. N., Rehman, R., Aslam, F., Sagar, S., Masood, N., Nazir, A., Iqbal, M. Polish Journal of Environmental Studies 2021, 30, 1–5; https://doi.org/10.1016/j.mib.2021.08.005.Search in Google Scholar PubMed
10. Munir, A., Sultana, B., Bashir, A., Ghaffar, A., Munir, B., Shar, G. A., Nazir, A., Iqbal, M. Polish Journal of Environmental Studies 2018, 27; https://doi.org/10.15244/pjoes/69944.Search in Google Scholar
11. Igwe, O. U., Nwamezie, F. Chem. Int. 2018, 4, 60–66.10.1002/nadc.20184071829Search in Google Scholar
12. Perveen, S., Nadeem, R., Rehman, S. u., Afzal, N., Anjum, S., Noreen, S., Saeed, R., Amami, M., Al-Mijalli, S. H., Iqbal, M. Arab. J. Chem. 2022, 15, 103764; https://doi.org/10.1016/j.arabjc.2022.103764.Search in Google Scholar
13. Noreen, S., Mustafa, G., Ibrahim, S. M., Naz, S., Iqbal, M., Yaseen, M., Javed, T., Nisar, J. J. Mater. Res. Technol. 2020, 9, 4206–4217; https://doi.org/10.1016/j.jmrt.2020.02.047.Search in Google Scholar
14. Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F. M., Khan, M. I., Jalal, F., Iqbal, M. J. Mater. Res. Technol. 2019, 8, 6115–6124; https://doi.org/10.1016/j.jmrt.2019.10.006.Search in Google Scholar
15. Arshad, M., Abbas, M., Ehtisham-ul-Haque, S., Farrukh, M. A., Ali, A., Rizvi, H., Soomro, G. A., Ghaffar, A., Yameen, M., Iqbal, M. J. Mol. Struct. 2019, 1180, 244–250; https://doi.org/10.1016/j.molstruc.2018.11.104.Search in Google Scholar
16. Parveen, S., Bhatti, I., Ashar, A., Javed, T., Mohsin, M., Hussain, M., Khan, M., Naz, S., Iqbal, M. Mater. Res. Express 2020, 7, 035016; https://doi.org/10.1088/2053-1591/ab73fa.Search in Google Scholar
17. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297; https://doi.org/10.1007/s00128-017-2220-5.Search in Google Scholar PubMed
18. Obek, E., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2011, 86, 217–220; https://doi.org/10.1007/s00128-011-0197-z.Search in Google Scholar PubMed
19. Sasmaz, A., Sasmaz, M. Environ. Exp. Bot. 2009, 67, 139–144; https://doi.org/10.1016/j.envexpbot.2009.06.014.Search in Google Scholar
20. Sasmaz, A., Obek, E., Hasar, H. Ecol. Eng. 2008, 33, 278–284; https://doi.org/10.1016/j.ecoleng.2008.05.006.Search in Google Scholar
21. Dagde, K., Ikenyiri, P., Yorpah, P. Chem. Int. 2023, 9, 94–103.Search in Google Scholar
22. Abid, H., Amanat, A., Ahmed, D., Qamar, T. Chem. Int. 2023, 9, 1–7.Search in Google Scholar
23. Bhatti, H. N., Iram, Z., Iqbal, M., Nisar, J., Khan, M. Mater. Res. Express 2020, 7, 015802; https://doi.org/10.1088/2053-1591/ab66a0.Search in Google Scholar
24. Vinosha, P. A., Manikandan, A., Preetha, A. C., Dinesh, A., Slimani, Y., Almessiere, M. A., Baykal, A., Xavier, B., Nirmala, G. F. J. Supercond. Novel Magnetism 2021, 34, 995–1018; https://doi.org/10.1007/s10948-021-05854-6.Search in Google Scholar
25. Dinesh, A., Raja, K. K., Manikandan, A., Almessiere, M. A., Slimani, Y., Baykal, A., Saeed Alorfi, H., Hussein, M. A., Khan, A. J. Mater. Res. Technol. 2022, 18, 5280–5289; https://doi.org/10.1016/j.jmrt.2022.04.121.Search in Google Scholar
26. Aljameel, S., Almessiere, M. A., Khan, F. A., Taskhandi, N., Slimani, Y., Al-Saleh, N. S., Manikandan, A., Al-Suhaimi, E. A., Baykal, A. Nanomaterials 2021, 11, 700; https://doi.org/10.3390/nano11030700.Search in Google Scholar PubMed PubMed Central
27. George, M., Ajeesha, T., Manikandan, A., Anantharaman, A., Jansi, R., Kumar, E. R., Slimani, Y., Almessiere, M., Baykal, A. J. Phys. Chem. Solid 2021, 153, 110010; https://doi.org/10.1016/j.jpcs.2021.110010.Search in Google Scholar
28. Hannachi, E., Mahmoud, K. A., Sayyed, M. I., Slimani, Y. Mater. Sci. Semicond. Process. 2022, 145, 106629; https://doi.org/10.1016/j.mssp.2022.106629.Search in Google Scholar
29. Gunasekaran, S., Thanrasu, K., Manikandan, A., Durka, M., Dinesh, A., Anand, S., Shankar, S., Slimani, Y., Almessiere, M. A., Baykal, A. Phys. B Condens. Matter 2021, 605, 412784; https://doi.org/10.1016/j.physb.2020.412784.Search in Google Scholar
30. Almessiere, M. A., Slimani, Y., Rehman, S., Khan, F. A., Sertkol, M., Baykal, A. J. Phys. D: Appl. Phys. 2021, 55, 055002; https://doi.org/10.1088/1361-6463/ac2fd8.Search in Google Scholar
31. Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley Publishing: Boston, 1956.Search in Google Scholar
32. Holland, H., Murtagh, M. Adv. X Ray Anal. 2000, 42, 421–428.Search in Google Scholar
33. Devaman, R., Alagar, M. Elixir Nanotechnol. 2013, 61, 16845–16848.Search in Google Scholar
34. Atul, Kumar, M., Sharma, A., Maurya, I. K., Thakur, A., Kumar, S. J. Taibah Univ. Sci. 2019, 13, 280–285; https://doi.org/10.1080/16583655.2019.1565437.Search in Google Scholar
35. Remy, A., Niklas, J., Kuhl, H., Kellers, P., Schott, T., Rögner, M., Gerwert, K. Eur. J. Biochem. 2004, 271, 563–567; https://doi.org/10.1046/j.1432-1033.2003.03958.x.Search in Google Scholar PubMed
36. Sandiningtyas, R. D., Suendo, V. Isolation of chlorophyll a from spinach and its modification using Fe2+ in photostability study. In Proceedings of the Third International Conference on Mathematics and Natural Sciences, 2010; pp. 859–873.Search in Google Scholar
37. Kirupakar, B., Vishwanath, B., Sree, M. P. Int. J. Pharm. Drug Anal. 2016, 4, 227–233.Search in Google Scholar
38. Almessiere, M., Slimani, Y., Algarou, N., Gondal, M., Wudil, Y., Younas, M., Auwal, I., Baykal, A., Manikandan, A., Zubar, T., Kostishin, V., Trukhanov, A., Ercan, I. Ceram. Int. 2021, 47, 35209–35223; https://doi.org/10.1016/j.ceramint.2021.09.064.Search in Google Scholar
39. Cruz-Vargas, J., Belmont-Bernal, F., Vera-De la Garza, C. G., Mazariego, J. L. P., González, R. W. G., Henao-Holguín, L. V., Rojas-Montoya, I. D., Guadarrama, P. New J. Chem. 2018, 42, 13107–13113; https://doi.org/10.1039/c8nj02270d.Search in Google Scholar
40. Al-Fa’ouri, A. M., Abu-Kharma, M. H., Awwad, A. M. Chem. Int. 2021, 7, 155–162.Search in Google Scholar
41. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151–159.Search in Google Scholar
42. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., Deng, X. Procedia Eng. 2012, 27, 632–637; https://doi.org/10.1016/j.proeng.2011.12.498.Search in Google Scholar
43. Hahn, B. P., Long, J. W., Mansour, A. N., Pettigrew, K. A., Osofsky, M. S., Rolison, D. R. Energy Environ. Sci. 2011, 4, 1495–1502; https://doi.org/10.1039/c0ee00819b.Search in Google Scholar
44. Šutka, A., Lagzdina, S., Juhnevica, I., Jakovlevs, D., Maiorov, M. Ceram. Int. 2014, 40, 11437–11440; https://doi.org/10.1016/j.ceramint.2014.03.140.Search in Google Scholar
45. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607; https://doi.org/10.1515/zpch-2020-1803.Search in Google Scholar
46. Jaffri, S. B., Ahmad, K. S., Thebo, K. H., Rehman, F. Z. Phys. Chem. 2021, 235, 1539–1572; https://doi.org/10.1515/zpch-2020-1729.Search in Google Scholar
47. Nazir, A., Khalid, F., ur Rehman, S., Sarwar, M., Iqbal, M., Yaseen, M., Khan, M. I., Abbas, M. Z. Phys. Chem. 2020, 235, 769–784; https://doi.org/10.1515/zpch-2019-1558.Search in Google Scholar
48. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Search in Google Scholar
49. Mathiarasu, R. R., Manikandan, A., Panneerselvam, K., George, M., Raja, K. K., Almessiere, M. A., Slimani, Y., Baykal, A., Asiri, A. M., Kamal, T., Khan, A. J. Mater. Res. Technol. 2021, 15, 5936–5947; https://doi.org/10.1016/j.jmrt.2021.11.047.Search in Google Scholar
50. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1–8.Search in Google Scholar
51. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42–48.Search in Google Scholar
52. Awwad, A. M., Amer, M. W. Chem. Int. 2020, 6, 210–217.Search in Google Scholar
53. Mouhamad, R. S., Al Khafaji, K. A., Al-Dharob, M. H., Al-Abodi, E. E. Chem. Int. 2022, 8, 159–166.Search in Google Scholar
54. AL-Dharob, M. H., Mouhamad, R. S., Al Khafaji, K. A., Al-Abodi, E. E. Chem. Int. 2022, 8, 58–67.Search in Google Scholar
55. Shammout, M. W., Awwad, A. M. Chem. Int. 2021, 7, 71–78.Search in Google Scholar
56. Remya, V., Abitha, V., Rajput, P., Rane, A., Dutta, A. Chem. Int. 2017, 3, 165–171.Search in Google Scholar
57. Hannachi, E., Khan, F. A., Slimani, Y., Rehman, S., Trabelsi, Z., Akhtar, S., Al-Suhaimi, E. A. Biology 2022, 11, 1836; https://doi.org/10.3390/biology11121836.Search in Google Scholar PubMed PubMed Central
58. Ahmad, B., Khan, M. I., Naeem, M. A., Alhodaib, A., Fatima, M., Amami, M., Al-Abbad, E. A., Kausar, A., Alwadai, N., Nazir, A., Iqbal, M. Mater. Chem. Phys. 2022, 288, 126363; https://doi.org/10.1016/j.matchemphys.2022.126363.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Okra-psyllium based green synthesis of eco-friendly bio-adsorbent for efficient removal of uranium and crystal violet dye from aqueous media: statistical optimization using response surface methodology
- Dansyl based selective fluorescence sensor for Hg in aqueous environment: an experimental and computational studies
- Cobalt and holmium co-doped nickel ferrite nanoparticles: synthesis, characterization and photocatalytic application studies
- Green synthesis of magnetic Fe3O4 nanoflakes using vegetables extracts and their magnetic, structural and antibacterial properties evaluation
- Effect of ethanol and sodium chloride on the physio-chemical properties of Montelukast sodium and its interaction with DNA
- Synthesis, crystal growth and supramolecular chemistry of 4-dimethylaminopyridinium salts of benzoates and a phenolate ion
- Exploring the occurrence, relationship and in vitro culturing behaviors of bacterial populations associated with dental caries in adult patients
- A thermodynamic investigation on the micellization behavior of ionic liquid in presence of vitamins
- Cd/SBA-15 heterogeneous catalyst used for acetic acid conversion: pseudo-homogeneous kinetic model, response surface methodology, and historical data design
Articles in the same Issue
- Frontmatter
- Original Papers
- Okra-psyllium based green synthesis of eco-friendly bio-adsorbent for efficient removal of uranium and crystal violet dye from aqueous media: statistical optimization using response surface methodology
- Dansyl based selective fluorescence sensor for Hg in aqueous environment: an experimental and computational studies
- Cobalt and holmium co-doped nickel ferrite nanoparticles: synthesis, characterization and photocatalytic application studies
- Green synthesis of magnetic Fe3O4 nanoflakes using vegetables extracts and their magnetic, structural and antibacterial properties evaluation
- Effect of ethanol and sodium chloride on the physio-chemical properties of Montelukast sodium and its interaction with DNA
- Synthesis, crystal growth and supramolecular chemistry of 4-dimethylaminopyridinium salts of benzoates and a phenolate ion
- Exploring the occurrence, relationship and in vitro culturing behaviors of bacterial populations associated with dental caries in adult patients
- A thermodynamic investigation on the micellization behavior of ionic liquid in presence of vitamins
- Cd/SBA-15 heterogeneous catalyst used for acetic acid conversion: pseudo-homogeneous kinetic model, response surface methodology, and historical data design