Home Dansyl based selective fluorescence sensor for Hg in aqueous environment: an experimental and computational studies
Article
Licensed
Unlicensed Requires Authentication

Dansyl based selective fluorescence sensor for Hg in aqueous environment: an experimental and computational studies

  • Naseem Qureshi , Mahar Ali , Shahen Shah , Manzoor Hussain , Mehdi Hassan , Hawas Khan , Sobhy M. Ibrahim , Munawar Iqbal EMAIL logo , Arif Nazir and Umer Younas
Published/Copyright: July 24, 2023

Abstract

The selective fluorescence sensors are used for the analysis of toxic pollutants in the environment. In this study, phenol dansyl amide (PDA) was prepared as highly stable fluorescence ligand by using nucleophilic substitution reaction. Its interaction with eighteen different cations including Hg2+ and series of anions were investigated by using UV-visible and fluorescent spectrophotometry. However, PDA significantly indicated high sensitivity and selective quenching effect towards mercury ion. Furthermore, Density Functional Theory (DFT) along with the B3LYP method was implemented to explore minimum energy complex and fluorescence mechanism. The computed results revealed that among four possible optimized complexes of PDA and Hg+ ion, the first complex (PDA-Hg2+–I) was observed to be the most stable complex with the estimated energy difference of 8.91 kcal/mol and intermolecular charge transfer mechanism was observed in the same complex by HOMO and LUMO computation.


Corresponding author: Munawar Iqbal, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; and Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan, E-mail:

Acknowledgments

This work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Silva, D. A. P., Gunaratne, H. N., Gunnlaugsson, T., Huxley, A. J., McCoy, C. P., Rademacher, J. T., Rice, T. E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566; https://doi.org/10.1021/cr960386p.Search in Google Scholar PubMed

2. Yoon, J., Ohler, N. E., Vance, D. H., Aumiller, W. D., Czarnik, A. W. A fluorescent chemosensor signalling only Hg (II) and Cu (II) in water. Tetrahedron Lett. 1997, 38, 3845–3848; https://doi.org/10.1016/s0040-4039(97)00768-5.Search in Google Scholar

3. Naqhiyha, F. A., Muhammad, A. K., Hamid, R. N., Siti, N. B. H., Sharifah, M. Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Environ. Sci. Pollut. Res. Int. 2017, 24, 21846–21858; https://doi.org/10.1007/s11356-017-9820-9.Search in Google Scholar PubMed

4. Gunnlaugsson, T., Glynn, M., Tocci, G. M., Kruger, P. E., Pfeffer, F. M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev. 2006, 250, 3094–3117; https://doi.org/10.1016/j.ccr.2006.08.017.Search in Google Scholar

5. Talanova, G. G., Talanov, V. S. Dansyl-containing fluorogenic calixarenes as optical chemosensors of hazardous metal ions. Supramol. Chem. 2010, 22, 838–852; https://doi.org/10.1080/10610278.2010.514612.Search in Google Scholar

6. Nolan, E. M., Lippard, S. J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443–3480; https://doi.org/10.1021/cr068000q.Search in Google Scholar PubMed

7. Hafuka, A., Yoshikawa, H., Yamada, K., Kato, T., Takahashi, M., Okabe, S., Satoh, H. Application of fluorescence spectroscopy using a novel fluoroionophore for quantification of zinc in urban runoff. Water Res. 2014, 54, 12–20; https://doi.org/10.1016/j.watres.2014.01.040.Search in Google Scholar PubMed

8. Braschi, I., Blasioli, S., Buscaroli, E., Montecchio, D., Martucci, A. Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics. J. Environ. Sci. 2016, 43, 302–312; https://doi.org/10.1016/j.jes.2015.07.017.Search in Google Scholar PubMed

9. Wang, S., Zhuang, W., Ce, H. H., Willie, J. G. M. P. DFT/TDDFT insights into effects of dissociation and metal complexation on photochemical behavior of enrofloxacin in water. Environ. Sci. Pollut. Res. 2018, 25, 30609–30616; https://doi.org/10.1007/s11356-018-3032-9.Search in Google Scholar PubMed

10. Zhao-Hui, W., Lu, X., Zhang, K. Distribution and contamination of metals and biogenic elements in sediments from zhifu bay of the yellow sea, China. J. Environ. Sci. 2016, 41, 6–15; https://doi.org/10.1016/j.jes.2015.06.009.Search in Google Scholar PubMed

11. Roose-Amsaleg, C., Laverman, A. M. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ. Sci. Pollut. Res. 2016, 23, 4000–4012; https://doi.org/10.1007/s11356-015-4943-3.Search in Google Scholar PubMed

12. Siudek, P., Frankowski, M., Siepak, J. Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environ. Sci. Pollut. Res. 2015, 22, 11087–11096; https://doi.org/10.1007/s11356-015-4356-3.Search in Google Scholar PubMed PubMed Central

13. Sharif, A., Ashraf, M., AnjumJaveed, A. A. A., Altaf, I., Akhtar, M. F., Abbas, M., Akhtar, B., Saleem, M. Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead(II) and arsenic(III) from aqueous solution. Environ. Sci. Pollut. Res. 2016, 23, 2813–2820; https://doi.org/10.1007/s11356-015-5478-3.Search in Google Scholar PubMed

14. Yu, Z., Zhang, J., Chen, X., Yin, D., Deng, H. Inhibitions on the behavior and growth of the nematode progeny after prenatal exposure to sulfonamides at micromolar concentrations. J. Hazard. Mater. 2013, 250–251, 198–203; https://doi.org/10.1016/j.jhazmat.2013.01.078.Search in Google Scholar PubMed

15. Sharpe, R. I., Benskin, J. P., Laarman, A. H., MacLeod, S. L., Martin, J. W., Wong, C. S., Goss, G. G. Perfluorooctane sulfonate toxicity, isomer‐specific accumulation, and maternal transfer in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 2010, 29, 1957–1966; https://doi.org/10.1002/etc.257.Search in Google Scholar PubMed

16. Kamiya, M., Kameyama, K. Effects of selected metal ions on photodegradation of organophosphorus pesticides sensitized by humic acids. Chemosphere 2001, 45, 231–235; https://doi.org/10.1016/s0045-6535(00)00573-7.Search in Google Scholar PubMed

17. Zodape, G. V., Tayade, M. A. Presence of Cd, Co, Mg, Ni and Hg in commercially important shrimp and water sediments collected from gorai creak of Mumbai suburb of (west coast) India. Environ. Sci. Pollut. Res. 2016, 2, 60–63.10.15341/mese(2333-2581)/05.02.2016/003Search in Google Scholar

18. Hasler, C., Hauser, A., Olchowka, J., Hageman, H. Energy transfer between different Eu2+ ions in the white phosphor Ba7F12Cl2:Eu2+. J. Lumin. 2021, 233, 117866; https://doi.org/10.1016/j.jlumin.2020.117866.Search in Google Scholar

19. Abbas, K., Znad, H., Awual, M. R. A ligand anchored conjugate adsorbent for effective mercury (II) detection and removal from aqueous media. Chem. Eng. J. 2018, 334, 432–443; https://doi.org/10.1016/j.cej.2017.10.054.Search in Google Scholar

20. Langford, N., Ferner, R. Toxicity of mercury. J. Hum. Hypertens. 1999, 13, 651; https://doi.org/10.1038/sj.jhh.1000896.Search in Google Scholar PubMed

21. Ocak, A. H., Ocak, M., Shen, X., Surowiec, K., Bartsch, R. A. Effect of pendant group length upon metal ion complexation in acetonitrile by di-ionized calix [4] arenes bearing two dansyl fluorophores. J. Fluoresc. 2009, 19, 997; https://doi.org/10.1007/s10895-009-0499-2.Search in Google Scholar PubMed

22. Ocak, A. H., Ocak, M., Surowiec, K., Bartsch, R. A., Gorbunova, M. G., Tu, C., Surowiec, M. A. Metal ion complexation in acetonitrile by di-ionized calix [4] arenes bearing two dansyl fluorophores. J. Inclusion Phenom. Macrocyclic Chem. 2009, 63, 131–139; https://doi.org/10.1007/s10847-008-9497-2.Search in Google Scholar

23. Talanova, G. G., Elkarim, N. S., Talanov, V. S., Bartsch, R. A. A calixarene-based fluorogenic reagent for selective mercury (II) recognition. Anal. Chem. 1999, 71, 3106–3109; https://doi.org/10.1021/ac990205u.Search in Google Scholar PubMed

24. Park, S. M., Kim, M. H., Choe, J. I., No, K. T., Chang, S. K. Cyclams bearing diametrically disubstituted pyrenes as Cu2+ and Hg2+ selective fluoroionophores. J. Org. Chem. 2007, 72, 3550–3553; https://doi.org/10.1021/jo062516s.Search in Google Scholar PubMed

25. Moon, S. Y., Youn, N. J., Park, S. M., Chang, S. K. Diametrically disubstituted cyclam derivative having Hg2+-selective fluoroionophoric behaviors. J. Org. Chem. 2005, 70, 2394–2397; https://doi.org/10.1021/jo0482054.Search in Google Scholar PubMed

26. Zhang, H., Han, L. F., Zachariasse, K. A., Jiang, Y. B. 8-Hydroxyquinoline benzoates as highly sensitive fluorescent chemosensors for transition metal ions. Org. Lett. 2005, 7, 4217–4220; https://doi.org/10.1021/ol051614h.Search in Google Scholar PubMed

27. Wu, J. S., Hwang, I. C., Kim, K. S., Kim, J. S. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF − ON. Org. Lett. 2007, 9, 907–910; https://doi.org/10.1021/ol070109c.Search in Google Scholar PubMed

28. Huston, M. E., Engleman, C., Czarnik, A. W. Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. J. ACS 1990, 112, 7054–7056; https://doi.org/10.1021/ja00175a046.Search in Google Scholar

29. Rurack, K., Kollmannsberger, M., Resch-Genger, U., Daub, J. R. A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J. ACS 2000, 122, 968–969; https://doi.org/10.1021/ja992630a.Search in Google Scholar

30. Hennrich, G., Walther, W., Resch-Genger, U., Sonnenschein, H. Cu (II)-and Hg (II)- induced modulation of the fluorescence behavior of a redox-active sensor molecule. Inorg. Chem. 2001, 40, 641–644; https://doi.org/10.1021/ic000827u.Search in Google Scholar PubMed

31. Ivanova, B. B., Spiteller, M. 3D structural analysis of copper(II) complex of glycine– Experimental mass spectrometric and theoretical quantum chemical approach. J. Mol. Struct. 2019, 1179, 192–204; https://doi.org/10.1016/j.molstruc.2018.10.088.Search in Google Scholar

32. Shah, S., Hao, C. Density functional theory study of direct and indirect photodegradation photolysis mechanisms of sulfamete. Environ. Sci. Pollut. Res. 2016, 23, 19921–19930; https://doi.org/10.1007/s11356-016-6956-y.Search in Google Scholar PubMed

33. Zhang, H., Wei, X., Song, X., Shah, S., Chen, J., Liu, J., Hao, C., Chen, Z. Photophysical and photochemical insights into the photodegradation of sulfapyridine in water: a joint experimental and theoretical study. Chemosphere 2018, 191, 1021–1027; https://doi.org/10.1016/j.chemosphere.2017.10.036.Search in Google Scholar PubMed

34. Qureshi, N., Yufit, D. S., Howard, J. A., Steed, J. W. Ion-pair binding by mixed N, S-donor 2-ureidopyridine ligands. Dalton Trans. 2009, 29, 5708–5714; https://doi.org/10.1039/b905555j.Search in Google Scholar PubMed

35. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H. Gaussian. 09 Package; Gaussian Inc.: Wallingford, CT, 2009.Search in Google Scholar

36. Ali, F., Hamza, M., Iqbal, M., Basha, B., Alwadai, N., Nazir, A. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review. Z. Phys. Chem. 2021, 236, 291–326; https://doi.org/10.1515/zpch-2021-3084.Search in Google Scholar

37. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Lead remediation using smart materials. A review. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Search in Google Scholar

38. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater. Z. Phys. Chem. 2020, 235, 1027–1039; https://doi.org/10.1515/zpch-2019-1567.Search in Google Scholar

39. Sharif, S., Zaman, Q. U., Hassan, F., Javaid, S., Arif, K., Mansha, M. Z., Ehsan, N., Nazir, S., Gul, R., Iqbal, M., Nazir, A. Coagulation of metallic pollutants from wastewater using a variety of coagulants based on metal binding interaction studies. Z. Phys. Chem. 2021, 235, 467–481; https://doi.org/10.1515/zpch-2019-1532.Search in Google Scholar

40. Zaman, Q. U., Anwar, S., Mehmood, F., Nawaz, R., Masood, N., Nazir, A., Iqbal, M., Nazir, S., Sultan, K. Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater. Z. Phys. Chem. 2021, 235, 1041–1053; https://doi.org/10.1515/zpch-2020-1640.Search in Google Scholar

41. Shumiugan, R., Gabriel, G. J., Tew, G. N., Aamer, K. A highly colorometric aqueous sensor for mercury sensor. Chem. Eur. J. 2008, 14, 3904; https://doi.org/10.1002/chem.200701895.Search in Google Scholar PubMed

42. Das, S., Sarkar, A., Rakshit, A., Datta, A. A sensitive water-soluble reversible optical probe for Hg2+ detection. Inorg. Chem. 2018, 57, 5273; https://doi.org/10.1021/acs.inorgchem.8b00310.Search in Google Scholar PubMed

43. Wu, W. G., He, B. S., Peng, H. P., Deng, H. H., Liu, A. L., Lin, X. H., Xia, X. H., Chen, W. Citrate based platinum nanoparticle as small probe for ultra-sensitive mercury detection. Anal. Chem. 2014, 86, 10955; https://doi.org/10.1021/ac503544w.Search in Google Scholar PubMed

44. Bera, K., Das, A. K., Nag, M., Basak, S. Development of rhodamine-rhodanine dye fluorescent mercury sensor and its use to monitor real time uptake and distribution of inororganic mercury in live zebra fish. Anal. Chem. 2014, 86, 2740; https://doi.org/10.1021/ac404160v.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2022-0172).


Received: 2022-12-15
Accepted: 2023-07-12
Published Online: 2023-07-24
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0172/html
Scroll to top button