Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy
Abstract
The docking simulation of benzamide derivatives as ligands and protein targets (DNA–gyrase) was performed and Sec14p binding mode interaction was predicted based on binding free energy analysis. Software Molegro Virtual Docking (MVD) was used to visualize the ligand–protein binding interactions. The results indicated the prevalence of steric or hydrophobic interactions among all the benzamide ligands besides hydrogen bonding or electrostatic interactions. The compounds B2, B4 against DNA gyrase, and compounds B3, B5 against Sec14p showed an uncompetitive pattern of inhibition as compared with the reference molecule. While compounds B1, B5 exhibited the best MolDock scores, i.e., −109.736 and −114.391 kcal/mol respectively for DNA gyrase, also compounds B1 and B2 against Sec14p displayed −100.105 and −119.451 kcal/mol sequentially. It was evident from the comparison of MolDock score for both the bacterial and fungal protein receptors that all the ligands were found to be more potent against DNA gyrase than Sec14p. However, only compound B2 with MolDock score −119.451 kcal/mol showed exceptional activity against Sec14p and was predicted to have potency as a lead compound to find a new anti-fungal therapeutic agent. Docking studies further highlighted the unique interactions such as tail-end hydrophobic rings of benzamide inhibitors with catalytically important amino acid residues, allowing flexibility in binding to both the receptors different from other inhibitors. These findings showed us that B1, B2 against Staphylococcus aureus and B5 against Saccharomyces cerevisiae could be leading compounds to discover new multidrug-resistant strains.
Acknowledgments
We are thankful to Dr. Muhammad Khalid, for the computational resources for docking studies, Assistant Professor, Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200-Rahim Yar Khan, Pakistan.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Tahir, M. B., Farman, S., Rasheed, A., Alrobei, H., Shahzad, K., Ali, A. M., Muhammad, S. Z. Phys. Chem. 2022, 236, 169–180, https://doi.org/10.1515/zpch-2021-3060.Suche in Google Scholar
2. Kasraei, R., Malakootian, M., Mohamadi, M. Z. Phys. Chem. 2021, 235, 885–908.Suche in Google Scholar
3. Tijar, R., Bourjila, M., Guerdaoui, A. E., El Merbouh, B., El Bouzaidi, R. D., El Gridani, A. Chem. Int. 2017, 3, 477–486.Suche in Google Scholar
4. Bourjila, M., El Gridani, A., Tijar, R., El Merbouh, B., Drissi, R., Bouzaidi, E. Chem. Int. 2018, 4, 216–220.Suche in Google Scholar
5. Habib, A., Bhatti, H. N., Iqbal, M., Asim, S., Mansha, A. Z. Phys. Chem. 2019, 233, 1645–1657; https://doi.org/10.1515/zpch-2018-1340.Suche in Google Scholar
6. Frombach, J., Lohan, S. B., Lemm, D., Gruner, P., Hasler, J., Ahlberg, S., Blume-Peytavi, U., Unbehauen, M., Haag, R., Meinke, M. C., Vogt, A. 2018. 232, 919–933; https://doi.org/10.1515/zpch-2017-1048.Suche in Google Scholar
7. Nisar, J., Iqbal, M., Iqbal, M., Shah, A., Akhter, M. S., Khan, R. A., Uddin, I., Shah, L. A., Khan, M. S. Z. Phys. Chem. 2020, 234, 117–128; https://doi.org/10.1515/zpch-2018-1273.Suche in Google Scholar
8. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Suche in Google Scholar
9. Lomesh, S. K., Nathan, V., Bala, M., Kumar, I. Z. Phys. Chem. 2020, 234, 1853–1874; https://doi.org/10.1515/zpch-2019-1386.Suche in Google Scholar
10. Shehatta, I. Z. Phys. Chem. 2001, 215, 605.10.1524/zpch.2001.215.5.605Suche in Google Scholar
11. Bourjila, M., El Gridani, A., Tijar, R., El Merbouh, B., Drissi, R., Bouzaidi, E. Chem. Int. 2019, 5, 132–142.Suche in Google Scholar
12. Tijar, R., El Merbouh, B., Bourjila, M., Guerdaoui, A., El Bouzaidi, R. D., El Gridani, A., Mouhtadi, M. Chem. Int. 2016, 2, 201–221.Suche in Google Scholar
13. Ukpaka, C. P. Chem. Int. 2019, 5, 143–157.Suche in Google Scholar
14. Nikodimos, Y., Hagos, B., Dereje, D., Hussen, M. Chem. Int. 2018, 4, 43–51.Suche in Google Scholar
15. Tijar, R., Bourjila, M., Guerdaoui, A., El Merbouh, B., El Bouzaidi, R. D., El Gridani, A. Chem. Int. 2017, 3, 477–486.Suche in Google Scholar
16. Sun, C.-Y., Li, Y.-S., Shi, A.-L., Li, Y.-F., Cao, R.-F., Ding, H.-W., Yin, Q.-Q., Zhang, L.-J., Zheng, H.-C., Song, H.-R. Chin. Chem. Lett. 2015, 26, 1307–1310; https://doi.org/10.1016/j.cclet.2015.06.017.Suche in Google Scholar
17. Wang, X.-M., Xu, J., Xin, M.-H., Lu, S.-M., Zhang, S.-Q. Bioorg. Med. Chem. Lett 2015, 25, 1730–1735; https://doi.org/10.1016/j.bmcl.2015.02.067.Suche in Google Scholar PubMed
18. Sakr, A., Kothayer, H., Ibrahim, S. M., Baraka, M. M., Rezq, S. Bioorg. Chem. 2019, 84, 76–86; https://doi.org/10.1016/j.bioorg.2018.11.030.Suche in Google Scholar PubMed
19. Czaplewski, L. G., Collins, I., Boyd, E. A., Brown, D., East, S. P., Gardiner, M., Fletcher, R., Haydon, D. J., Henstock, V., Ingram, P. Bioorg. Med. Chem. Lett 2009, 19, 524–527; https://doi.org/10.1016/j.bmcl.2008.11.021.Suche in Google Scholar PubMed
20. Bala, S., Sharma, N., Kajal, A., Kamboj, S. Sci. World J. 2014, 2014, 1–9; https://doi.org/10.1155/2014/732141.Suche in Google Scholar PubMed PubMed Central
21. Kim, B. J., Kim, J., Kim, Y.-K., Choi, S.-Y., Choo, H.-Y. P. Bull. Kor. Chem. Soc. 2010, 31, 1270–1274; https://doi.org/10.5012/bkcs.2010.31.5.1270.Suche in Google Scholar
22. Jiang, Z., Wang, H., Li, Y., Peng, Z., Li, Y., Li, Z. Acta Pharm. Sin. B 2015, 5, 201–209; https://doi.org/10.1016/j.apsb.2015.03.013.Suche in Google Scholar PubMed PubMed Central
23. Mitachi, K., Salinas, Y. G., Connelly, M., Jensen, N., Ling, T., Rivas, F. Bioorg. Med. Chem. Lett 2012, 22, 4536–4539; https://doi.org/10.1016/j.bmcl.2012.05.124.Suche in Google Scholar PubMed
24. Ören, İ. Y., Şener, E. A., Ertaş, C., Arpaci, Ö. T., Yalçin, İ., Altanlar, N. Turk. J. Chem. 2004, 28, 441–450.Suche in Google Scholar
25. Ertan, T., Yildiz, I., Ozkan, S., Temiz-Arpaci, O., Kaynak, F., Yalcin, I., Aki-Sener, E., Abbasoglu, U. Bioorg. Med. Chem. 2007, 15, 2032–2044; https://doi.org/10.1016/j.bmc.2006.12.035.Suche in Google Scholar PubMed
26. Acar, C., Yalçın, G., Ertan-Bolelli, T., Onurdağ, F. K., Ökten, S., Şener, F., Yıldız, İ. Bioorg. Chem. 2020, 94, 103368; https://doi.org/10.1016/j.bioorg.2019.103368.Suche in Google Scholar PubMed
27. Nagaraj, K., Arunachalam, S. Z. Phys. Chem. 2013, 227, 1687–1706; https://doi.org/10.1524/zpch.2013.0374.Suche in Google Scholar
28. Morgner, N., Barth, H. D., Schmidt, T. L., Heckel, A., Scheffer, U., Göbel, M., Fucini, P., Brutschy, B. Z. Phys. Chem. 2007, 221, 689–704; https://doi.org/10.1524/zpch.2007.221.5.689.Suche in Google Scholar
29. Suzuki, R., Nozawa, D., Futamura, A., Nishikawa-Shimono, R., Abe, M., Hattori, N., Ohta, H., Araki, Y., Kambe, D., Ohmichi, M. Bioorg. Med. Chem. 2015, 23, 1260–1275; https://doi.org/10.1016/j.bmc.2015.01.044.Suche in Google Scholar PubMed
30. Łażewska, D., Kieć-Kononowicz, K. Expert Opin. Ther. Pat. 2014, 24, 89–111.10.1517/13543776.2014.848197Suche in Google Scholar PubMed
31. Djeha, A. H., Thomson, T. A., Leung, H., Searle, P. F., Young, L. S., Kerr, D. J., Harris, P. A., Mountain, A., Wrighton, C. J. Mol. Ther. 2001, 3, 233–240; https://doi.org/10.1006/mthe.2000.0250.Suche in Google Scholar PubMed
32. Gorlewska, K., Mazerska, Z., Sowiński, P., Konopa, J. Chem. Res. Toxicol. 2001, 14, 1–10; https://doi.org/10.1021/tx000081c.Suche in Google Scholar PubMed
33. Çelik, A., Yetiş, G. Bioorg. Med. Chem. 2012, 20, 3540–3550.10.1016/j.bmc.2012.04.004Suche in Google Scholar PubMed
34. Rajamuthiah, R., Fuchs, B. B., Conery, A. L., Kim, W., Jayamani, E., Kwon, B., Ausubel, F. M., Mylonakis, E. PLoS One 2015, 10, e0124595; https://doi.org/10.1371/journal.pone.0124595.Suche in Google Scholar PubMed PubMed Central
35. Karthik, L., Kumar, G., Keswani, T., Bhattacharyya, A., Chandar, S. S., Rao, K. B. PLoS One 2014, 9, e90972; https://doi.org/10.1371/journal.pone.0090972.Suche in Google Scholar PubMed PubMed Central
36. Mrozik, H., Jones, H., Friedman, J., Schwartzkopf, G., Schardt, R., Patchett, A., Hoff, D., Yakstis, J., Riek, R., Ostlind, D. Experientia 1969, 25, 883; https://doi.org/10.1007/bf01897937.Suche in Google Scholar PubMed
37. Cuena, B. R., Maciá, M. M. Atención Primaria 1998, 21, 289.Suche in Google Scholar
38. Waszkowycz, B., Clark, D. E., Gancia, E. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 229–259; https://doi.org/10.1002/wcms.18.Suche in Google Scholar
39. Yuriev, E., Ramsland, P. A. J. Mol. Recogn. 2013, 26, 215–239; https://doi.org/10.1002/jmr.2266.Suche in Google Scholar PubMed
40. Pagadala, N. S., Syed, K., Tuszynski, J. Biophys. Rev. 2017, 9, 91–102; https://doi.org/10.1007/s12551-016-0247-1.Suche in Google Scholar PubMed PubMed Central
41. Rohs, R., Bloch, I., Sklenar, H., Shakked, Z. Nucleic Acids Res. 2005, 33, 7048–7057; https://doi.org/10.1093/nar/gki1008.Suche in Google Scholar PubMed PubMed Central
42. Guedes, I. A., de Magalhães, C. S., Dardenne, L. E. Biophys. Rev. 2014, 6, 75–87; https://doi.org/10.1007/s12551-013-0130-2.Suche in Google Scholar
43. Chou, K.-C. Curr. Med. Chem. 2004, 11, 2105–2134; https://doi.org/10.2174/0929867043364667.Suche in Google Scholar
44. Reindl, W., Yuan, J., Krämer, A., Strebhardt, K., Berg, T. J. Chem. Biol. 2008, 15, 459–466; https://doi.org/10.1016/j.chembiol.2008.03.013.Suche in Google Scholar
45. Schneider, G., Böhm, H.-J. Drug Discov. Today 2002, 7, 64–70; https://doi.org/10.1016/s1359-6446(02)00004-1.Suche in Google Scholar
46. Naeem, S., Hylands, P., Barlow, D. J. Appl. Pharmaceut. Sci. 2013, 3, 13.Suche in Google Scholar
47. Durdagi, S., ul Qamar, M. T., Salmas, R. E., Tariq, Q., Anwar, F., Ashfaq, U. A. J. Mol. Graph. Model. 2018, 85, 122–129; https://doi.org/10.1016/j.jmgm.2018.07.010.Suche in Google Scholar PubMed
48. Nile, A. H., Tripathi, A., Yuan, P., Mousley, C. J., Suresh, S., Wallace, I. M., Shah, S. D., Pohlhaus, D. T., Temple, B., Nislow, C., Giaever, G. Nat. Chem. Biol. 2014, 10, 76–84; https://doi.org/10.1038/nchembio.1389.Suche in Google Scholar PubMed PubMed Central
49. D. Studio and I. Insight: San Diego, CA, 2009; p. 92121.Suche in Google Scholar
50. Kusumaningrum, S., Budianto, E., Kosela, S., Sumaryono, W., Juniarti, F. J. Appl. Pharmaceut. Sci. 2014, 4, 047–053.Suche in Google Scholar
51. Drlica, K., Zhao, X. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392; https://doi.org/10.1128/mmbr.61.3.377-392.1997.Suche in Google Scholar PubMed PubMed Central
52. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., Tanabe, K. J. Am. Chem. Soc. 2002, 124, 104–112; https://doi.org/10.1021/ja0105212.Suche in Google Scholar PubMed
53. Meyer, E. A., Castellano, R. K., Diederich, F. Angewandte Chem. Int. Edit. 2003, 42, 1210–1250. https://doi.org/10.1002/anie.200390319.Suche in Google Scholar PubMed
54. Clark, T., Hennemann, M., Murray, J. S., Politzer, P. J. Mol. Model. 2007, 13, 291–296; https://doi.org/10.1007/s00894-006-0130-2.Suche in Google Scholar PubMed
55. Politzer, P., Murray, J. S., Clark, T. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189; https://doi.org/10.1039/c3cp00054k.Suche in Google Scholar PubMed
56. de Freitas, R. F., Schapira, M. Medchemcomm 2017, 8, 1970–1981; https://doi.org/10.1039/c7md00381a.Suche in Google Scholar PubMed PubMed Central
57. Pries, V., Nöcker, C., Khan, D., Johnen, P., Hong, Z., Tripathi, A., Keller, A.-L., Fitz, M., Perruccio, F., Filipuzzi, I. Cell Chem. Biol. 2018, 25, 279–290. e277; https://doi.org/10.1016/j.chembiol.2017.12.007.Suche in Google Scholar PubMed PubMed Central
58. Filipuzzi, I., Cotesta, S., Perruccio, F., Knapp, B., Fu, Y., Studer, C., Pries, V., Riedl, R., Helliwell, S. B., Petrovic, K. T. J. PLoS Genetics 2016, 12, e1006374; https://doi.org/10.1371/journal.pgen.1006374.Suche in Google Scholar PubMed PubMed Central
59. Olsen, L., Pettersson, I., Hemmingsen, L., Adolph, H.-W., Jørgensen, F. S. J. J. Comput. Aided Mol. Des. 2004, 18, 287–302; https://doi.org/10.1023/b:jcam.0000046821.15502.71.10.1023/B:JCAM.0000046821.15502.71Suche in Google Scholar
60. Subramanian, A., Jaganathan, S., Manikandan, A., Pandiaraj, K., Gomathi, N., Supriyanto, E. RSC Adv. 2016, 6, 48294–48314; https://doi.org/10.1039/c6ra07802h.Suche in Google Scholar
61. Suhail, M., Ali, I. Chem. Int. 2020, 6, 277–294.Suche in Google Scholar
62. Patel, R., Kumar, S., Verma, A., Srivastava, S. Chem. Int. 2017, 3, 158–164.Suche in Google Scholar
63. Aljameel, S., Almessiere, M. A., Khan, F. A., Taskhandi, N., Slimani, Y., Al-Saleh, N. S., Manikandan, A., Al-Suhaimi, E. A., Baykal, A. Nanomaterials 2021, 11, 700; https://doi.org/10.3390/nano11030700.Suche in Google Scholar PubMed PubMed Central
64. Algarou, N. A., Slimani, Y., Almessiere, M. A., Sadaqat, A., Trukhanov, A. V., Gondal, M. A., Hakeem, A. S., Trukhanov, S. V., Vakhitov, M. G., Klygach, D. S. Nanomaterials 2020, 10, 2134; https://doi.org/10.3390/nano10112134.Suche in Google Scholar PubMed PubMed Central
65. Pradhan, A., Vishwakarma, S. Chem. Int. 2020, 6, 224–231.Suche in Google Scholar
66. Vellayappan, M., Jaganathan, S., Manikandan, A. RSC Adv. 2016, 6, 114859–114878; https://doi.org/10.1039/c6ra24590k.Suche in Google Scholar
67. Jaganathan, S. K., Mani, M. P., Nageswaran, G., Krishnasamy, N. P., Manikandan, A. Polym. Test. 2018, 70, 244–254; https://doi.org/10.1016/j.polymertesting.2018.07.015.Suche in Google Scholar
68. Manikandan, A., Mani, M. P., Jaganathan, S. K., Rajasekar, R. Polym. Compos. 2018, 39, E132–E139; https://doi.org/10.1002/pc.24463.Suche in Google Scholar
69. Jaganathan, S. K., Mani, M. P., Khudzari, A. Z. M., Ismail, A. F., Manikandan, A., Rathanasamy, R. Int. J. Polym. Anal. Char. 2019, 24, 696–708; https://doi.org/10.1080/1023666x.2019.1662590.Suche in Google Scholar
70. Jaganathan, S. K., Mani, M. P., Manikandan, A., Rathanasamy, R. Polym. Test. 2019, 78, 105955; https://doi.org/10.1016/j.polymertesting.2019.105955.Suche in Google Scholar
71. Jaganathan, S. K., Mani, M. P., Nageswaran, G., Krishnasamy, N. P., Manikandan, A. Int. J. Polym. Anal. Char. 2019, 24, 204–218; https://doi.org/10.1080/1023666x.2018.1564127.Suche in Google Scholar
72. Sasmaz, A., Ozkan, S., Gursu, M. F., Sasmaz, M. Appl. Radiat. Isot. 2017, 129, 185–188; https://doi.org/10.1016/j.apradiso.2017.07.060.Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- X-ray photoemission studies of the interaction of metals and metal ions with DNA
- Original Papers
- Back to the roots: the concepts of force and energy
- Synthesis and inhibitive characteristic of two acryloyl chloride derivatives towards the corrosion of API 5L X52 carbon steel in hydrochloric acid medium
- Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy
- Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract
Artikel in diesem Heft
- Frontmatter
- Review Article
- X-ray photoemission studies of the interaction of metals and metal ions with DNA
- Original Papers
- Back to the roots: the concepts of force and energy
- Synthesis and inhibitive characteristic of two acryloyl chloride derivatives towards the corrosion of API 5L X52 carbon steel in hydrochloric acid medium
- Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy
- Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract