Abstract
X-ray Photoelectron Spectroscopy (XPS) has been used to study the interactions of heavy metal ions with DNA with some success. Surface sensitivity and selectivity of XPS are advantageous for identifying and characterizing the chemical and elemental structure of the DNA to metal interaction. This review summarizes the status of what amounts to a large part of the photoemission investigations of biomolecule interactions with metals and offers insight into the mechanism for heavy metal-bio interface interactions. Specifically, it is seen that metal interaction with DNA results in conformational changes in the DNA structure.
Funding source: Science and Engineering Research Board
Funding source: National Science Foundation
Award Identifier / Grant number: NSF-DMR: 1827690
Funding source: National Science Foundation
Award Identifier / Grant number: NSF-DMR 2003057
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by Science and Engineering Research Board and National Science Foundation (NSF-DMR: 1827690 and 2003057).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. Interdiscipl. Toxicol. 2014, 7, 60–72; https://doi.org/10.2478/intox-2014-0009.Search in Google Scholar
2. Squibb, K. S., Fowler, B. A. Relationship between metal toxicity to subcellular systems and the carcinogenic response. Environ. Health Perspect. 1981, 40, 181–188; https://doi.org/10.1289/ehp.8140181.Search in Google Scholar
3. Alkorta, I., Hernández-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., Garbisu, C. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol. 2004, 3, 71–90; https://doi.org/10.1023/b:resb.0000040059.70899.3d.10.1023/B:RESB.0000040059.70899.3dSearch in Google Scholar
4. Schützendübel, A., Polle, A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365; https://doi.org/10.1093/jexbot/53.372.1351.Search in Google Scholar
5. Anastassopoulou, J. Metal-DNA interactions. J. Mol. Struct. 2003, 651–653, 19–26; https://doi.org/10.1016/s0022-2860(02)00625-7.Search in Google Scholar
6. Breaker, R. R., Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1994, 1, 223–229; https://doi.org/10.1016/1074-5521(94)90014-0.Search in Google Scholar
7. Lu, Y., Liu, J., Li, J., Bruesehoff, P. J., Pavot, C. M. B., Brown, A. K. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens. Bioelectron. 2003, 18, 529–540; https://doi.org/10.1016/s0956-5663(03)00013-7.Search in Google Scholar
8. Brown, A. K., Liu, J., He, Y., Lu, Y. Biochemical characterization of a uranyl ion-specific DNAzyme. ChemBioChem 2009, 10, 486–492; https://doi.org/10.1002/cbic.200800632.Search in Google Scholar PubMed
9. Liu, J., Brown, A. K., Meng, X., Cropek, D. M., Istok, J. D., Watson, D. B., Lu, Y. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2056–2061; https://doi.org/10.1073/pnas.0607875104.Search in Google Scholar PubMed PubMed Central
10. Lan, T., Furuya, K., Lu, Y. A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun. 2010, 46, 3896–3898; https://doi.org/10.1039/b926910j.Search in Google Scholar PubMed PubMed Central
11. Barlow, S. M., Raval, R. Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201–341; https://doi.org/10.1016/s0167-5729(03)00015-3.Search in Google Scholar
12. Marti, E. M., Quash, A., Methivier, C., Dubot, P., Pradier, C. M. Interaction of S-histidine, an amino acid, with copper and gold surfaces, a comparison based on RAIRS analyses. Colloid. Surface. Physicochem. Eng. Aspect. 2004, 249, 85–89; https://doi.org/10.1016/j.colsurfa.2004.08.055.Search in Google Scholar
13. Vallee, A., Humblot, V., Pradier, C. M. Peptide interactions with metal and oxide surfaces. Acc. Chem. Res. 2010, 43, 1297–1306; https://doi.org/10.1021/ar100017n.Search in Google Scholar
14. Castner, D. G., Ratner, B. D. Biomedical surface science: foundations to frontiers. Surf. Sci. 2002, 500, 28–60; https://doi.org/10.1016/s0039-6028(01)01587-4.Search in Google Scholar
15. McArthur, S. L. Applications of XPS in bioengineering. Surf. Interface Anal. 2006, 38, 1380–1385; https://doi.org/10.1002/sia.2498.Search in Google Scholar
16. Tománek, D., Dowben, P. A., Grunze, M. Thermodynamic interpretation of core-level binding energies in adsorbates. Surf. Sci. 1983, 126, 112–119; https://doi.org/10.1016/0039-6028(83)90700-8.Search in Google Scholar
17. Egelhoff, W. F. Core-level binding-energy shifts at surfaces and in solids. Surf. Sci. Rep. 1987, 6, 253–415; https://doi.org/10.1016/0167-5729(87)90007-0.Search in Google Scholar
18. Jablonski, A., Powell, C. J. Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths. J. Electron. Spectrosc. Relat. Phenom. 1999, 100, 137–160; https://doi.org/10.1016/s0368-2048(99)00044-4.Search in Google Scholar
19. Baer, D. R., Engelhard, M. H. XPS analysis of nanostructured materials and biological surfaces. J. Electron. Spectrosc. Relat. Phenom. 2010, 178–179, 415–432; https://doi.org/10.1016/j.elspec.2009.09.003.Search in Google Scholar
20. Neal, A. L., Lowe, K., Daulton, T. L., Jones-Meehan, J., Little, B. J. Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction. Appl. Surf. Sci. 2002, 202, 150–159; https://doi.org/10.1016/s0169-4332(02)00550-0.Search in Google Scholar
21. Ahimou, F., Boonaert, C. J. P., Adriaensen, Y., Jacques, P., Thonart, P., Paquot, M., Rouxhet, P. G. XPS analysis of chemical functions at the surface of Bacillus subtilis. J. Colloid Interface Sci. 2007, 309, 49–55; https://doi.org/10.1016/j.jcis.2007.01.055.Search in Google Scholar PubMed
22. Nonckreman, C. J., Rouxhet, P. G., Dupont-Gillain, C. C. Dual radiolabeling to study protein adsorption competition in relation with hemocompatibility. J. Biomed. Mater. Res. 2006, 79, 963–973.10.1002/jbm.a.31111Search in Google Scholar PubMed
23. Hanawa, T., Hiromoto, S., Yamamoto, A., Kuroda, D., Asami, K. XPS characterization of the surface oxide film of 316L stainless steel samples that were located in quasi-biological environments. Mater. Trans. 2002, 43, 3088–3092; https://doi.org/10.2320/matertrans.43.3088.Search in Google Scholar
24. Murgunde, B. K., Rabinal, M. K., Kalasad, M. N. Biologically active nanocomposite of DNA-PbS nanoparticles: a new material for non-volatile memory devices. Appl. Surf. Sci. 2018, 427, 344–353; https://doi.org/10.1016/j.apsusc.2017.08.001.Search in Google Scholar
25. Jayakumar, K., Camarada, M. B., Dharuman, V., Rajesh, R., Venkatesan, R., Ju, H., Maniraj, M., Rai, A., Barman, S. R., Wen, Y. Layer-by-layer-assembled AuNPs-decorated first-generation poly(amidoamine) dendrimer with reduced graphene oxide core as highly sensitive biosensing platform with controllable 3D nanoarchitecture for rapid voltammetric analysis of ultratrace DNA hybridiza. ACS Appl. Mater. Interfaces 2018, 10, 21541–21555; https://doi.org/10.1021/acsami.8b03236.Search in Google Scholar PubMed
26. Yu, K., Wei, T., Li, Z., Li, J., Wang, Z., Dai, Z. Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF-DNA interaction. J. Am. Chem. Soc. 2020, 142, 21267–21271; https://doi.org/10.1021/jacs.0c10442.Search in Google Scholar PubMed
27. Furukawa, M., Yamada, T., Katano, S., Kawai, M., Ogasawara, H., Nilsson, A. Geometrical characterization of adenine and guanine on Cu(110) by NEXAFS, XPS, and DFT calculation. Surf. Sci. 2007, 601, 5433–5440; https://doi.org/10.1016/j.susc.2007.09.009.Search in Google Scholar
28. Acres, R. G., Cheng, X., Beranová, K., Bercha, S., Skála, T., Matolín, V., Xu, Y., Prince, K. C., Tsud, N. An experimental and theoretical study of adenine adsorption on Au(111). Phys. Chem. Chem. Phys. 2018, 20, 4688–4698; https://doi.org/10.1039/c7cp08102b.Search in Google Scholar PubMed
29. Bercha, S., Bhasker-Ranganath, S., Zheng, X., Beranová, K., Vorokhta, M., Acres, R. G., Skála, T., Matolín, V., Prince, K. C., Xu, Y., Tsud, N. Adsorption structure of adenine on cerium oxide. Appl. Surf. Sci. 2020, 530, 147257; https://doi.org/10.1016/j.apsusc.2020.147257.Search in Google Scholar
30. Tsud, N., Bercha, S., Ševčíková, K., Acres, R. G., Prince, K. C., Matolín, V. Adenine adlayers on Cu(111): XPS and NEXAFS study. J. Chem. Phys. 2015, 143, 174704; https://doi.org/10.1063/1.4935055.Search in Google Scholar PubMed
31. Seifert, S., Gavrila, G. N., Zahn, D. R. T., Braun, W. The molecular orientation of DNA bases on H-passivated Si(1 1 1) surfaces investigated by means of near edge X-ray absorption fine structure spectroscopy. Surf. Sci. 2007, 601, 2291–2296; https://doi.org/10.1016/j.susc.2007.01.022.Search in Google Scholar
32. Plekan, O., Feyer, V., Richter, R., Coreno, M., de Simone, M., Prince, K. C., Trofimov, A. B., Gromov, E. V., Zaytseva, I. L., Schirmer, J. A theoretical and experimental study of the near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectra (XPS) of nucleobases: thymine and adenine. Chem. Phys. 2008, 347, 360–375; https://doi.org/10.1016/j.chemphys.2007.09.021.Search in Google Scholar
33. Feyer, V., Plekan, O., Prince, K. C., Šutara, F., Skála, T., Cháb, V., Matolín, V., Stenuit, G., Umari, P. Bonding at the organic/metal interface: adenine to Cu(110). Phys. Rev. B 2009, 79, 155432; https://doi.org/10.1103/physrevb.79.155432.Search in Google Scholar
34. Tsud, N., Acres, R. G., Iakhnenko, M., Mazur, D., Prince, K. C., Matolín, V. Bonding of histidine to cerium oxide. J. Phys. Chem. B 2013, 117, 9182–9193; https://doi.org/10.1021/jp404385h.Search in Google Scholar PubMed
35. Chhipa, H., Srinivasa Reddy, T., Soni, S. K., Selvakannan, P. R., Bhargava, S. K. Self-assembled nanostructures of phosphomolybdate, nucleobase and metal ions synthesis and their: in vitro cytotoxicity studies on cancer cell lines. J. Mater. Chem. B 2020, 8, 11044–11054; https://doi.org/10.1039/d0tb01945c.Search in Google Scholar PubMed
36. Mandal, S., Rautaray, D., Sastry, M. Ag+-keggin ion colloidal particles as novel templates for the growth of silver nanoparticle assemblies. J. Mater. Chem. 2003, 13, 3002–3005; https://doi.org/10.1039/b307000j.Search in Google Scholar
37. Sanyal, A., Mandal, S., Sastry, M. Synthesis and assembly of gold nanoparticles in quasi-linear lysine-keggin-ion colloidal particles. Adv. Funct. Mater. 2005, 15, 273–280; https://doi.org/10.1002/adfm.200400107.Search in Google Scholar
38. Ma, N., Ren, X., Wang, H., Kuang, X., Fan, D., Wu, D., Wei, Q. Ultrasensitive controlled release aptasensor using thymine-Hg2+-thymine mismatch as a molecular switch for Hg2+ detection. Anal. Chem. 2020, 92, 14069–14075; https://doi.org/10.1021/acs.analchem.0c03110.Search in Google Scholar PubMed
39. Yuan, H., Sun, G., Peng, W., Ji, W., Chu, S., Liu, Q., Liang, Y. Thymine-functionalized gold nanoparticles (Au NPs) for a highly sensitive fiber-optic surface plasmon resonance mercury ion nanosensor. Nanomaterials 2021, 11, 397; https://doi.org/10.3390/nano11020397.Search in Google Scholar PubMed PubMed Central
40. Howorka, S. DNA nanoarchitectonics: assembled DNA at interfaces. Langmuir 2013, 29, 7344–7353; https://doi.org/10.1021/la3045785.Search in Google Scholar PubMed
41. Fu, J., Liu, M., Liu, Y., Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res. 2012, 45, 1215–1226; https://doi.org/10.1021/ar200295q.Search in Google Scholar
42. Volkov, I. L., Smirnova, A., Makarova, A. A., Reveguk, Z. V., Ramazanov, R. R., Usachov, D. Y., Adamchuk, V. K., Kononov, A. I. DNA with ionic, atomic, and clustered silver: an XPS study. J. Phys. Chem. B 2017, 121, 2400–2406; https://doi.org/10.1021/acs.jpcb.6b11218.Search in Google Scholar
43. Majumder, S., Priyadarshini, M., Subudhi, U., Chainy, G. B. N., Varma, S. X-ray photoelectron spectroscopic investigations of modifications in plasmid DNA after interaction with Hg nanoparticles. Appl. Surf. Sci. 2009, 256, 438–442; https://doi.org/10.1016/j.apsusc.2009.06.097.Search in Google Scholar
44. Birnboim, H. C. A. Rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983, 100, 243–255; https://doi.org/10.1016/0076-6879(83)00059-2.Search in Google Scholar
45. Burda, J. V., Šponer, J., Leszczynski, J., Hobza, P. Interaction of DNA base pairs with various metal cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): nonempirical ab initio calculations on structures, energies, and nonadditivity of the interaction. J. Phys. Chem. B 1997, 101, 9670–9677. https://doi.org/10.1021/jp963753+.10.1021/jp963753+Search in Google Scholar
46. Fraker, A. C., Ruff, A. W., Sung, P., Van Orden, A. C., Speck, K. M. Surface Preparation and Corrosion Behavior of Titanium Alloys for Surgical Implants; ASTM Spec. Tech. Publ.: Philadelphia, USA, 1983; pp. 206–219.10.1520/STP28944SSearch in Google Scholar
47. Majumder, S., Mishra, I., Subudhi, U., Varma, S. Enhanced biocompatibility for plasmid DNA on patterned TiO2 surfaces. Appl. Phys. Lett. 2013, 103, 063103; https://doi.org/10.1063/1.4817916.Search in Google Scholar
48. Gong, Y., Misture, S. T., Gao, P., Mellott, N. P. Surface roughness measurements using power spectrum density analysis with enhanced spatial correlation length. J. Phys. Chem. C 2016, 120, 22358–22364; https://doi.org/10.1021/acs.jpcc.6b06635.Search in Google Scholar
49. Caló, A., Stoliar, P., Bystrenova, E., Valle, F., Biscarini, F. Measurement of DNA morphological parameters at highly entangled regime on surfaces. J. Phys. Chem. B 2009, 113, 4987–4990; https://doi.org/10.1021/jp8097318.Search in Google Scholar PubMed
50. Ono, A., Cao, S., Togashi, H., Tashiro, M., Fujimoto, T., MacHinami, T., Oda, S., Miyake, Y., Okamoto, I., Tanaka, Y. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. 2008, 4825–4827; https://doi.org/10.1039/b808686a.Search in Google Scholar PubMed
51. Swasey, S. M., Leal, L. E., Lopez-Acevedo, O., Pavlovich, J., Gwinn, E. G. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci. Rep. 2015, 5, 1–9; https://doi.org/10.1038/srep10163.Search in Google Scholar
52. Zinchenko, A. A., Yoshikawa, K., Baigl, D. DNA-templated silver nanorings. Adv. Mater. 2005, 17, 2820–2823; https://doi.org/10.1002/adma.200501549.Search in Google Scholar
53. Wang, Y., Ran, S., Man, B., Yang, G. DNA condensations on mica surfaces induced collaboratively by alcohol and hexammine cobalt. Colloids Surf. B Biointerfaces 2011, 83, 61–68; https://doi.org/10.1016/j.colsurfb.2010.10.040.Search in Google Scholar
54. Gosule, L. C., Schellman, J. A. DNA condensation with polyamines. I. Spectroscopic studies. J. Mol. Biol. 1978, 121, 311–326; https://doi.org/10.1016/0022-2836(78)90366-2.Search in Google Scholar
55. Kral, T., Hof, M., Langner, M. The effect of spermine on plasmid condensation and dye release observed by fluorescence correlation spectroscopy. Biol. Chem. 2002, 383, 331–335; https://doi.org/10.1515/BC.2002.036.Search in Google Scholar PubMed
56. Qin, C., Kang, F., Zhang, W., Shou, W., Hu, X., Gao, Y. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group. Water Res. 2017, 123, 58–66; https://doi.org/10.1016/j.watres.2017.06.043.Search in Google Scholar PubMed
57. Asanuma, H., Noguchi, H., Uosaki, K., Yu, H. Z. Metal cation-induced deformation of DNA self-assembled monolayers on silicon: vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 2008, 130, 8016–8022; https://doi.org/10.1021/ja801023r.Search in Google Scholar PubMed
58. Lee, C. Y., Gong, P., Harbers, G. M., Grainger, D. W., Castner, D. G., Gamble, L. J. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements. Anal. Chem. 2006, 78, 3316–3325; https://doi.org/10.1021/ac052137j.Search in Google Scholar PubMed
59. Petrovykh, D. Y., Kimura-Suda, H., Tarlov, M. J., Whitman, L. J. Quantitative characterization of DNA films by X-ray photoelectron spectroscopy. Langmuir 2004, 20, 429–440; https://doi.org/10.1021/la034944o.Search in Google Scholar PubMed
60. Saprigin, A. V., Thomas, C. W., Dulcey, C. S., Patterson, C. H., Spector, M. S. Spectroscopic quantification of covalently immobilized oligonucleotides. Surf. Interface Anal. 2005, 37, 24–32; https://doi.org/10.1002/sia.1999.Search in Google Scholar
61. Voicu, R., Boukherroub, R., Bartzoka, V., Ward, T., Wojtyk, J. T. C., Wayner, D. D. M. Formation, characterization, and chemistry of undecanoic acid-terminated silicon surfaces: patterning and immobilization of DNA. Langmuir 2004, 20, 11713–11720; https://doi.org/10.1021/la047886v.Search in Google Scholar
62. Dhiman, N., Bonilla, R., O’Kane, J. D., Poland, G. A. Gene expression microarrays: a 21st century tool for directed vaccine design. Vaccine 2001, 20, 22–30; https://doi.org/10.1016/s0264-410x(01)00319-x.Search in Google Scholar
63. Liu, Q., Wang, L., Frutos, A. G., Condon, A. E., Corn, R. M., Smith, L. M. DNA computing on surfaces. Nature 2000, 403, 175–179; https://doi.org/10.1038/35003155.Search in Google Scholar
64. Jackson, N. M., Hill, M. G. Electrochemistry at DNA-modified surfaces: new probes for charge transport through the double helix. Curr. Opin. Chem. Biol. 2001, 5, 209–215; https://doi.org/10.1016/s1367-5931(00)00192-7.Search in Google Scholar
65. Liu, S. Q., Xu, J. J., Chen, H. Y. A reversible adsorption-desorption interface of DNA based on nano-sized zirconia and its application. Colloids Surf. B Biointerfaces 2004, 36, 155–159; https://doi.org/10.1016/j.colsurfb.2004.03.020.Search in Google Scholar
66. Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006, 31, 603–632; https://doi.org/10.1016/j.progpolymsci.2006.06.001.Search in Google Scholar
67. Shahidi, F., Arachchi, J. K. V., Jeon, Y. J. Food applications of chitin and chitosans. Trends Food Sci. Technol. 1999, 10, 37–51; https://doi.org/10.1016/s0924-2244(99)00017-5.Search in Google Scholar
68. Liu, S., Kang, M., Yan, F., Peng, D., Yang, Y., He, L., Wang, M., Fang, S., Zhang, Z. Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(II) detection. Electrochim. Acta 2015, 160, 64–73; https://doi.org/10.1016/j.electacta.2015.02.030.Search in Google Scholar
69. Zhang, X., Wang, G., Gu, A., Wu, H., Fang, B. Preparation of porous Cu2O octahedron and its application as L-tyrosine sensors. Solid State Commun. 2008, 148, 525–528; https://doi.org/10.1016/j.ssc.2008.09.053.Search in Google Scholar
70. Zhang, X., Wang, G., Zhang, W., Wei, Y., Fang, B. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens. Bioelectron. 2009, 24, 3395–3398; https://doi.org/10.1016/j.bios.2009.04.031.Search in Google Scholar PubMed
71. Fan, H. T., Teng, X. M., Pan, S. S., Ye, C., Li, G. H., Zhang, L. D. Optical properties of δ-Bi2O3 thin films grown by reactive sputtering. Appl. Phys. Lett. 2005, 87, 231916; https://doi.org/10.1063/1.2136351.Search in Google Scholar
72. Kim, H. W., Lee, J. W., Shim, S. H., Kebede, M. A., Lee, C. Crystalline bismuth oxide nanorods fabricated on Pt-coated substrates using a trimethylbismuth and oxygen mixture. Cryst. Res. Technol. 2008, 43, 695–699; https://doi.org/10.1002/crat.200711155.Search in Google Scholar
73. Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69; https://doi.org/10.1038/35051047.Search in Google Scholar PubMed
74. Hale, M. G., Little, R., Salem, M. A., Hedley, J. H., Horrocks, B. R., Šiller, L. Formation of bismuth oxide nanowires by simultaneous templating and electrochemical adhesion of DNA on Si/SiO2. Thin Solid Films 2012, 520, 7044–7048; https://doi.org/10.1016/j.tsf.2012.07.083.Search in Google Scholar
75. Taniguchi, M., Kawai, T. DNA electronics. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 33, 1–12; https://doi.org/10.1016/j.physe.2006.01.005.Search in Google Scholar
76. Zhang, Z., Gekhtman, D., Dresselhaus, M. S., Ying, J. Y. Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem. Mater. 1999, 11, 1659–1665; https://doi.org/10.1021/cm9811545.Search in Google Scholar
77. Wingender, J., Neu, T. R., Flemming, H. C. What are bacterial extracellular polymeric substances?; Microb. Extracell. Polym. Subst.; Springer: Berlin, Heidelberg, 1999; pp. 1–19; https://doi.org/10.1007/978-3-642-60147-7_1.Search in Google Scholar
78. Steinberger, R. E., Holden, P. A. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl. Environ. Microbiol. 2005, 71, 5404–5410; https://doi.org/10.1128/aem.71.9.5404-5410.2005.Search in Google Scholar PubMed PubMed Central
79. Hufton, J., Harding, J. H., Romero-González, M. E. The role of extracellular DNA in uranium precipitation and biomineralisation. Phys. Chem. Chem. Phys. 2016, 18, 29101–29112; https://doi.org/10.1039/c6cp03239g.Search in Google Scholar PubMed
80. Makarova, A. A., Grachova, E. V., Neudachina, V. S., Yashina, L. V., Blüher, A., Molodtsov, S. L., Mertig, M., Ehrlich, H., Adamchuk, V. K., Laubschat, C., Vyalikh, D. V. Insight into bio-metal interface formation in vacuo: interplay of S-layer protein with copper and iron. Sci. Rep. 2015, 5, 1–7; https://doi.org/10.1038/srep08710.Search in Google Scholar PubMed PubMed Central
81. Schedel-Niedrig, T., Weiss, W., Schlögl, R. Electronic structure of ultrathin ordered iron oxide films grown onto Pt (111). Phys. Rev. B 1995, 52, 17449; https://doi.org/10.1103/physrevb.52.17449.Search in Google Scholar
82. Graat, P. C., Somers, M. A. Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra. Appl. Surf. Sci. 1996, 100–101, 36–40; https://doi.org/10.1016/0169-4332(96)00252-8.Search in Google Scholar
83. Schiewer, S., Volesky, B. Modeling multi-metal ion exchange in biosorption. Environ. Sci. Technol. 1996, 30, 2921–2927; https://doi.org/10.1021/es950800n.Search in Google Scholar
84. Krishnani, K. K., Meng, X., Christodoulatos, C., Boddu, V. M. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard. Mater. 2008, 153, 1222–1234; https://doi.org/10.1016/j.jhazmat.2007.09.113.Search in Google Scholar PubMed
85. Raize, O., Argaman, Y., Yannai, S. Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol. Bioeng. 2004, 87, 451–458; https://doi.org/10.1002/bit.20136.Search in Google Scholar PubMed
86. Flora, S. J. S., Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Publ. Health 2010, 7, 2745–2788; https://doi.org/10.3390/ijerph7072745.Search in Google Scholar PubMed PubMed Central
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- X-ray photoemission studies of the interaction of metals and metal ions with DNA
- Original Papers
- Back to the roots: the concepts of force and energy
- Synthesis and inhibitive characteristic of two acryloyl chloride derivatives towards the corrosion of API 5L X52 carbon steel in hydrochloric acid medium
- Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy
- Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract
Articles in the same Issue
- Frontmatter
- Review Article
- X-ray photoemission studies of the interaction of metals and metal ions with DNA
- Original Papers
- Back to the roots: the concepts of force and energy
- Synthesis and inhibitive characteristic of two acryloyl chloride derivatives towards the corrosion of API 5L X52 carbon steel in hydrochloric acid medium
- Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy
- Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract