Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol
-
Sadia Iqbal
, Ahmad Irfan
, Zahoor Ahmad
und Zahoor H. Farooqi
Abstract
The purpose of present work is to fabricate rhodium nanoparticles in Poly(N-isopropylmethacrylamide-acrylic acid) [p(NMAA)] microgel system. Synthesized polymer [p(NMAA)] microgels and rhodium nanoparticles loaded [Rh-p(NMAA)] microgels were analyzed by FTIR (Fourier Transform Infra-red) spectroscopy, XRD (X-ray Diffraction) analysis and UV/Vis (Ultraviolet–Visible) spectroscopy. Catalytic reductive conversion of P-nitrophenol (P-Nph) into P-aminophenol (P-Aph) via Rh-p(NMAA) was used to evaluate the catalytic activity of the hybrid microgel [Rh-p(NMAA)]. Kinetic study of catalytic reductive conversion of P-Nph was explored by considering various reaction parameters. It was found that the value of first order observed rate constant (k obs) was varied from 0.019 to 0.206 min−1 with change in concentration of sodium borohydride (SBH) from 3 to 14 mM at given temperature. However, further increment in concentration of SBH from 14 to 17 mM, reduced the value of k obs from 0.206 to 0.156 min−1. The similar dependence of k obs on concentration of P-Nph was observed at specific concentration of SBH and Rh-p(NMAA) at constant temperature. Kinetic study reveals that conversion of P-Nph to P-Aph takes place on the surface of rhodium nanoparticles (RhNPs) by adopting different reactions intermediates and obeys the Langmuir-Hinshelwood mechanism. Reduction efficiency of recycled Rh-p(NMAA) catalytic system was also measured and no significant reduction in the percentage catalytic activity was obtained up to four cycles for P-Nph conversion into P-Aph.
Funding source: Higher Education Commission (HEC)
Award Identifier / Grant number: 20-3995/NRPU/R&D/HEC/14/1212
Funding source: The Women University Multan
Funding source: King Khalid University
Award Identifier / Grant number: R.G.P.2/24/42
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The work was carried out using funding from Higher Education Commission (HEC), Pakistan through research grant no. 20-3995/NRPU/R&D/HEC/14/1212 and scholarship from The Women University Multan, Pakistan under FDP for PhD Studies to Sadia Iqbal for the year of 2019–2020. A. Irfan would like to acknowledge the financial support from Deanship of Scientific Research at the King Khalid University, Kingdom of Saudi Arabia for funding through research groups program under grant number R.G.P.2/24/42.
-
Conflict of interest statement: Authors declared no conflict of interest.
References
1. Wu, W., Aiello, M., Zhou, T., Berliner, A., Banerjee, P., Zhou, S. Biomaterials 2010, 31, 3023. https://doi.org/10.1016/j.biomaterials.2010.01.011.Suche in Google Scholar PubMed
2. Thorne, J. B., Vine, G. J., Snowden, M. J. Colloid Polym. Sci. 2011, 289, 625. https://doi.org/10.1007/s00396-010-2369-5.Suche in Google Scholar
3. Ko, S. H., Park, I., Pan, H., Grigoropoulos, C. P., Pisano, A. P., Luscombe, C. K., Fréchet, J. M. J. Nano Lett. 2007, 7, 1869. https://doi.org/10.1021/nl070333v.Suche in Google Scholar PubMed
4. Farooqi, Z. H., Butt, Z., Begum, R., Khan, S. R., Sharif, A., Ahmed, E. Mater. Sci. 2015, 33, 627. https://doi.org/10.1515/msp-2015-0074.Suche in Google Scholar
5. Tan, N. P. B., Lee, C. H., Li, P. Polymers 2016, 8, 105. https://doi.org/10.3390/polym8040105.Suche in Google Scholar PubMed PubMed Central
6. Gutiérrez, Y., Osa, R. A., Ortiz, D., Saiz, J. M., Gonazaléz, F., Moreno, F. Appl. Sci. 2018, 8, 64. https://doi.org/10.3390/app8010064.Suche in Google Scholar
7. Ha, M., Kim, J., You, M., Fan, C., Nam, J. Chem. Rev. 2019, 119, 12208. https://doi.org/10.1021/acs.chemrev.9b00234.Suche in Google Scholar PubMed
8. Corma, A., Garcia, H. Chem. Soc. Rev. 2008, 37, 2096. https://doi.org/10.1039/B707314N.Suche in Google Scholar PubMed
9. Begum, R., Naseem, K., Farooqi, Z. H. J. Sol. Gel Sci. Technol. 2016, 77, 497. https://doi.org/10.1007/s10971-015-3896-9.Suche in Google Scholar
10. Ismail, E., Kenfouch, M., Dhlamini, M. J. Nanomater. Mol. Nanotechnol. 2017, 6, 2. https://doi.org/10.4172/2324-8777.1000212.Suche in Google Scholar
11. Jacinto, M. J., Kiyohara, P. K., Masunaga, S. H., Jardim, R. F., Rossi, L. M. Appl. Catal., A 2008, 338, 52. https://doi.org/10.1016/j.apcata.2007.12.018.Suche in Google Scholar
12. Baeza, J. A., Calvo, L., Gilarranz, M. A., Roudriguez, J. J. Chem. Eng. J. 2014, 240, 271. https://doi.org/10.1016/j.cej.2013.11.091.Suche in Google Scholar
13. George, A., Selvan, D., Mandal, S. ChemistrySelect 2017, 2, 9718. https://doi.org/10.1002/slct.201701643.Suche in Google Scholar
14. Schulz, J., Levigne, S., Roucoux, A., Patin, H. Adv. Synth. Catal. 2002, 344, 266. https://doi.org/10.1002/1615-4169(200206)344.Suche in Google Scholar
15. Rossi, L. M., Vano, L. L. R., Garcia, M. A. S., Faria, T. L. T., Lopez-Sanchez, J. A. Top. Catal. 2013, 56, 1228. https://doi.org/10.1007/s11244-013-0089-z.Suche in Google Scholar
16. Kuklin, S., Maximov, A., Zolotukhina, A., Karakhanov, E. Catal. Commun. 2016, 73, 63. https://doi.org/10.1016/j.catcom.2015.10.005.Suche in Google Scholar
17. Gniewek, A., Trzeciak, A. M. Top. Catal. 2013, 56, 1239. https://doi.org/10.1007/s11244-013-0090-6.Suche in Google Scholar
18. Lger, B., Denicourt-Nowicki, A., Roucoux, A., Olivier-Bourbigoub, H. Adv. Synth. Catal. 2008, 350, 153. https://doi.org/10.1002/adsc.200700341.Suche in Google Scholar
19. Janiak, C. Z. Naturforsch. B Chem. Sci. 2013, 68, 1059. https://doi.org/10.5560/znb.2013-3140.Suche in Google Scholar
20. Han, D., Li, X., Zhang, H., Liu, Z., Hu, G., Li, C. J. Mol. Catal. Chem. 2008, 283, 15. https://doi.org/10.1016/j.molcata.2007.12.008.Suche in Google Scholar
21. Ertas, I. E., Gulcan, M., Bulut, A., Yurderi, M., Zahmakiran, M. J. Mol. Catal. Chem. 2015, 410, 209. https://doi.org/10.1016/j.molcata.2015.09.025.Suche in Google Scholar
22. Bilé, E. G., Sassine, R., Denicourt-Nowicki, A., Launay, F., Roucoux, A. Dalton Trans. 2011, 40, 6524. https://doi.org/10.1039/C0DT01763A.Suche in Google Scholar PubMed
23. Nakamula, I., Yamanoi, Y., Yonezawa, T., Imaoka, T., Yamamoto, K., Nishihara, H. Chem. Commun. 2008, 44, 5716. https://doi.org/10.1039/B813649A.Suche in Google Scholar
24. Naseem, K., Begum, R., Farooqi, Z. H. Polym. Compos. 2016, 39, 2167. https://doi.org/10.1002/pc.24212.Suche in Google Scholar
25. Ashraf, S., Begum, R., Rehan, R., Wu, W., Farooqi, Z. H. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1872. https://doi.org/10.1007/s10904-018-0879-7.Suche in Google Scholar
26. Pich, A., Karak, A., Lu, Y., Ghosh, A. K., Adler, H. P. J. Nanosci. Nanotechnol. 2006, 6, 3763. https://doi.org/10.1166/jnn.2006.621.Suche in Google Scholar PubMed
27. Khan, S. R., Farooqi, Z. H., Ajmal, M., Siddiq, M., Khan, A. J. Dispersion Sci. Technol. 2013, 34, 1324. https://doi.org/10.1080/01932691.2012.744690.Suche in Google Scholar
28. Farooqi, Z. H., Iqbal, S., Khan, S. R., Kanwal, F., Begum, R. e-Polymers 2014, 14, 313. https://doi.org/10.1515/epoly-2014-0111.Suche in Google Scholar
29. Farooqi, Z. H., Sakhawat, T., RKhan, S., Kanwal, F., Usman, M., Begum, R. Mater. Sci. 2015, 33, 185. https://doi.org/10.1515/msp-2015-0025.Suche in Google Scholar
30. Farooqi, Z. H., Ijaz, A., Begum, R., Naseem, K., Usman, M., Ajmal, M., Saeed, U. Polym. Compos. 2016, 39, 645. https://doi.org/10.1002/pc.23980.Suche in Google Scholar
31. Begum, R., Farooqi, Z. H., Aboo, A. H., Ahmed, E., Sharif, A., Xiao, J. J. Hazard. Mater. 2019, 377, 399. https://doi.org/10.1016/j.jhazmat.2019.05.080.Suche in Google Scholar PubMed
32. Khan, S. R., Farooqi, Z. H., Waheed-uz-Zaman, Ali, A., Begum, R., Kanwal, F., Siddiq, M. Mater. Chem. Phys. 2016, 171, 318. https://doi.org/10.1016/j.matchemphys.2016.01.023.Suche in Google Scholar
33. Parasuraman, D., Sarker, A. K., Serpe, M. J. Colloid Polym. Sci. 2013, 291, 1795. https://doi.org/10.1007/s00396-013-2915-z.Suche in Google Scholar
34. Chen, J. J., Ahmad, A. L., Ooi, B. S. J. Environ. Chem. Eng. 2013, 1, 339. https://doi.org/10.1016/j.jece.2013.05.012.Suche in Google Scholar
35. Parasuraman, D., Serpe, M. J. ACS Appl. Mater. Interfaces 2011, 3, 4714. https://doi.org/10.1021/am201132x.Suche in Google Scholar PubMed
36. Begum, R., Farooqi, Z. H., Butt, Z., Wu, Q., Wu, W., Irfan, A. J. Environ. Sci. 2018, 72, 43. https://doi.org/10.1016/j.jes.2017.12.003.Suche in Google Scholar PubMed
37. Zettsu, N., McLellan, J. M., Wiley, B., Yin, Y., Li, Z., Xia, Y. Angew. Chem. 2006, 118, 1310. https://doi.org/10.1002/ange.200503174.Suche in Google Scholar
38. Lyubimov, S. E., Rastorguev, E. A., Lubentsova, K. I., Korlyukov, A. A., Davankov, V. A. Tetrahedron Lett. 2013, 54, 1116. https://doi.org/10.1016/j.tetlet.2012.12.063.Suche in Google Scholar
39. Bhorali, N., Ganguli, J. N. Catal. Lett. 2013, 143, 276. https://doi.org/10.1007/s10562-012-0956-4.Suche in Google Scholar
40. Ayad, A. I., Luart, D., Dris, A. O., Guénin, E. Nanomaterials 2020, 10, 1169. https://doi.org/10.3390/nano10061169.Suche in Google Scholar PubMed PubMed Central
41. Roa, R., Angioletti-Uberti, S., Lu, Y., Dzubiella, J., Piazza, F., Ballauf, M. Z. Phys. Chem. 2018, 232, 773. https://doi.org/10.1515/zpch-2017-1078.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2020-1718).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability
- Original Papers
- Electrooxidation of 2-propanol on the mixture of nanoparticles of Pt and RuO2 supported on Ti
- Synthesis, characterization and photocatalytic application of Sophora mollis leaf extract mediated silver nanoparticles
- Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye
- Degradation of moxifloxacin by ionizing radiation and toxicity assessment
- Adsorptive removal of methylene blue (MB) and malachite green (MG) dyes from aqueous solutions using graphene oxide (GO)
- Oat extract as a natural alkaline scale inhibitor for carbon steel in seawater: electrochemical (AC and DC) studies
- Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts
- Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources
- Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol
- Biochar caged zirconium ferrite nanocomposites for the adsorptive removal of Reactive Blue 19 dye in a batch and column reactors and conditions optimizaton
- Impact of salts on the phase separation and thermodynamic properties of mixed nonionic surfactants in absence/attendance of polyvinyl alcohol
- Can optical fiber compete with profile analysis tensiometry in critical micelle concentration measurement?
- Experimental and theoretical study on the hydrogen bond interactions between ascorbic acid and glycine
- Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane
- Cobalt doping of nickel ferrites via sol gel approach: effect of doping on the structural and dielectric properties
- Determination of pseudo-refractive index in self-assembled ligand layers from spectral shift of surface plasmon resonances in colloidal silver nanoplates
Artikel in diesem Heft
- Frontmatter
- Review Article
- Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability
- Original Papers
- Electrooxidation of 2-propanol on the mixture of nanoparticles of Pt and RuO2 supported on Ti
- Synthesis, characterization and photocatalytic application of Sophora mollis leaf extract mediated silver nanoparticles
- Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye
- Degradation of moxifloxacin by ionizing radiation and toxicity assessment
- Adsorptive removal of methylene blue (MB) and malachite green (MG) dyes from aqueous solutions using graphene oxide (GO)
- Oat extract as a natural alkaline scale inhibitor for carbon steel in seawater: electrochemical (AC and DC) studies
- Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts
- Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources
- Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol
- Biochar caged zirconium ferrite nanocomposites for the adsorptive removal of Reactive Blue 19 dye in a batch and column reactors and conditions optimizaton
- Impact of salts on the phase separation and thermodynamic properties of mixed nonionic surfactants in absence/attendance of polyvinyl alcohol
- Can optical fiber compete with profile analysis tensiometry in critical micelle concentration measurement?
- Experimental and theoretical study on the hydrogen bond interactions between ascorbic acid and glycine
- Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane
- Cobalt doping of nickel ferrites via sol gel approach: effect of doping on the structural and dielectric properties
- Determination of pseudo-refractive index in self-assembled ligand layers from spectral shift of surface plasmon resonances in colloidal silver nanoplates