Startseite Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol

  • Sadia Iqbal , Sara Musaddiq , Robina Begum ORCID logo , Ahmad Irfan ORCID logo , Zahoor Ahmad , Muhammad Azam , Jan Nisar ORCID logo und Zahoor H. Farooqi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 22. April 2021

Abstract

The purpose of present work is to fabricate rhodium nanoparticles in Poly(N-isopropylmethacrylamide-acrylic acid) [p(NMAA)] microgel system. Synthesized polymer [p(NMAA)] microgels and rhodium nanoparticles loaded [Rh-p(NMAA)] microgels were analyzed by FTIR (Fourier Transform Infra-red) spectroscopy, XRD (X-ray Diffraction) analysis and UV/Vis (Ultraviolet–Visible) spectroscopy. Catalytic reductive conversion of P-nitrophenol (P-Nph) into P-aminophenol (P-Aph) via Rh-p(NMAA) was used to evaluate the catalytic activity of the hybrid microgel [Rh-p(NMAA)]. Kinetic study of catalytic reductive conversion of P-Nph was explored by considering various reaction parameters. It was found that the value of first order observed rate constant (k obs) was varied from 0.019 to 0.206 min−1 with change in concentration of sodium borohydride (SBH) from 3 to 14 mM at given temperature. However, further increment in concentration of SBH from 14 to 17 mM, reduced the value of k obs from 0.206 to 0.156 min−1. The similar dependence of k obs on concentration of P-Nph was observed at specific concentration of SBH and Rh-p(NMAA) at constant temperature. Kinetic study reveals that conversion of P-Nph to P-Aph takes place on the surface of rhodium nanoparticles (RhNPs) by adopting different reactions intermediates and obeys the Langmuir-Hinshelwood mechanism. Reduction efficiency of recycled Rh-p(NMAA) catalytic system was also measured and no significant reduction in the percentage catalytic activity was obtained up to four cycles for P-Nph conversion into P-Aph.


Corresponding author: Zahoor H. Farooqi, School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan, E-mail:

Funding source: Higher Education Commission (HEC)

Award Identifier / Grant number: 20-3995/NRPU/R&D/HEC/14/1212

Funding source: The Women University Multan

Funding source: King Khalid University

Award Identifier / Grant number: R.G.P.2/24/42

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was carried out using funding from Higher Education Commission (HEC), Pakistan through research grant no. 20-3995/NRPU/R&D/HEC/14/1212 and scholarship from The Women University Multan, Pakistan under FDP for PhD Studies to Sadia Iqbal for the year of 2019–2020. A. Irfan would like to acknowledge the financial support from Deanship of Scientific Research at the King Khalid University, Kingdom of Saudi Arabia for funding through research groups program under grant number R.G.P.2/24/42.

  3. Conflict of interest statement: Authors declared no conflict of interest.

References

1. Wu, W., Aiello, M., Zhou, T., Berliner, A., Banerjee, P., Zhou, S. Biomaterials 2010, 31, 3023. https://doi.org/10.1016/j.biomaterials.2010.01.011.Suche in Google Scholar PubMed

2. Thorne, J. B., Vine, G. J., Snowden, M. J. Colloid Polym. Sci. 2011, 289, 625. https://doi.org/10.1007/s00396-010-2369-5.Suche in Google Scholar

3. Ko, S. H., Park, I., Pan, H., Grigoropoulos, C. P., Pisano, A. P., Luscombe, C. K., Fréchet, J. M. J. Nano Lett. 2007, 7, 1869. https://doi.org/10.1021/nl070333v.Suche in Google Scholar PubMed

4. Farooqi, Z. H., Butt, Z., Begum, R., Khan, S. R., Sharif, A., Ahmed, E. Mater. Sci. 2015, 33, 627. https://doi.org/10.1515/msp-2015-0074.Suche in Google Scholar

5. Tan, N. P. B., Lee, C. H., Li, P. Polymers 2016, 8, 105. https://doi.org/10.3390/polym8040105.Suche in Google Scholar PubMed PubMed Central

6. Gutiérrez, Y., Osa, R. A., Ortiz, D., Saiz, J. M., Gonazaléz, F., Moreno, F. Appl. Sci. 2018, 8, 64. https://doi.org/10.3390/app8010064.Suche in Google Scholar

7. Ha, M., Kim, J., You, M., Fan, C., Nam, J. Chem. Rev. 2019, 119, 12208. https://doi.org/10.1021/acs.chemrev.9b00234.Suche in Google Scholar PubMed

8. Corma, A., Garcia, H. Chem. Soc. Rev. 2008, 37, 2096. https://doi.org/10.1039/B707314N.Suche in Google Scholar PubMed

9. Begum, R., Naseem, K., Farooqi, Z. H. J. Sol. Gel Sci. Technol. 2016, 77, 497. https://doi.org/10.1007/s10971-015-3896-9.Suche in Google Scholar

10. Ismail, E., Kenfouch, M., Dhlamini, M. J. Nanomater. Mol. Nanotechnol. 2017, 6, 2. https://doi.org/10.4172/2324-8777.1000212.Suche in Google Scholar

11. Jacinto, M. J., Kiyohara, P. K., Masunaga, S. H., Jardim, R. F., Rossi, L. M. Appl. Catal., A 2008, 338, 52. https://doi.org/10.1016/j.apcata.2007.12.018.Suche in Google Scholar

12. Baeza, J. A., Calvo, L., Gilarranz, M. A., Roudriguez, J. J. Chem. Eng. J. 2014, 240, 271. https://doi.org/10.1016/j.cej.2013.11.091.Suche in Google Scholar

13. George, A., Selvan, D., Mandal, S. ChemistrySelect 2017, 2, 9718. https://doi.org/10.1002/slct.201701643.Suche in Google Scholar

14. Schulz, J., Levigne, S., Roucoux, A., Patin, H. Adv. Synth. Catal. 2002, 344, 266. https://doi.org/10.1002/1615-4169(200206)344.Suche in Google Scholar

15. Rossi, L. M., Vano, L. L. R., Garcia, M. A. S., Faria, T. L. T., Lopez-Sanchez, J. A. Top. Catal. 2013, 56, 1228. https://doi.org/10.1007/s11244-013-0089-z.Suche in Google Scholar

16. Kuklin, S., Maximov, A., Zolotukhina, A., Karakhanov, E. Catal. Commun. 2016, 73, 63. https://doi.org/10.1016/j.catcom.2015.10.005.Suche in Google Scholar

17. Gniewek, A., Trzeciak, A. M. Top. Catal. 2013, 56, 1239. https://doi.org/10.1007/s11244-013-0090-6.Suche in Google Scholar

18. Lger, B., Denicourt-Nowicki, A., Roucoux, A., Olivier-Bourbigoub, H. Adv. Synth. Catal. 2008, 350, 153. https://doi.org/10.1002/adsc.200700341.Suche in Google Scholar

19. Janiak, C. Z. Naturforsch. B Chem. Sci. 2013, 68, 1059. https://doi.org/10.5560/znb.2013-3140.Suche in Google Scholar

20. Han, D., Li, X., Zhang, H., Liu, Z., Hu, G., Li, C. J. Mol. Catal. Chem. 2008, 283, 15. https://doi.org/10.1016/j.molcata.2007.12.008.Suche in Google Scholar

21. Ertas, I. E., Gulcan, M., Bulut, A., Yurderi, M., Zahmakiran, M. J. Mol. Catal. Chem. 2015, 410, 209. https://doi.org/10.1016/j.molcata.2015.09.025.Suche in Google Scholar

22. Bilé, E. G., Sassine, R., Denicourt-Nowicki, A., Launay, F., Roucoux, A. Dalton Trans. 2011, 40, 6524. https://doi.org/10.1039/C0DT01763A.Suche in Google Scholar PubMed

23. Nakamula, I., Yamanoi, Y., Yonezawa, T., Imaoka, T., Yamamoto, K., Nishihara, H. Chem. Commun. 2008, 44, 5716. https://doi.org/10.1039/B813649A.Suche in Google Scholar

24. Naseem, K., Begum, R., Farooqi, Z. H. Polym. Compos. 2016, 39, 2167. https://doi.org/10.1002/pc.24212.Suche in Google Scholar

25. Ashraf, S., Begum, R., Rehan, R., Wu, W., Farooqi, Z. H. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1872. https://doi.org/10.1007/s10904-018-0879-7.Suche in Google Scholar

26. Pich, A., Karak, A., Lu, Y., Ghosh, A. K., Adler, H. P. J. Nanosci. Nanotechnol. 2006, 6, 3763. https://doi.org/10.1166/jnn.2006.621.Suche in Google Scholar PubMed

27. Khan, S. R., Farooqi, Z. H., Ajmal, M., Siddiq, M., Khan, A. J. Dispersion Sci. Technol. 2013, 34, 1324. https://doi.org/10.1080/01932691.2012.744690.Suche in Google Scholar

28. Farooqi, Z. H., Iqbal, S., Khan, S. R., Kanwal, F., Begum, R. e-Polymers 2014, 14, 313. https://doi.org/10.1515/epoly-2014-0111.Suche in Google Scholar

29. Farooqi, Z. H., Sakhawat, T., RKhan, S., Kanwal, F., Usman, M., Begum, R. Mater. Sci. 2015, 33, 185. https://doi.org/10.1515/msp-2015-0025.Suche in Google Scholar

30. Farooqi, Z. H., Ijaz, A., Begum, R., Naseem, K., Usman, M., Ajmal, M., Saeed, U. Polym. Compos. 2016, 39, 645. https://doi.org/10.1002/pc.23980.Suche in Google Scholar

31. Begum, R., Farooqi, Z. H., Aboo, A. H., Ahmed, E., Sharif, A., Xiao, J. J. Hazard. Mater. 2019, 377, 399. https://doi.org/10.1016/j.jhazmat.2019.05.080.Suche in Google Scholar PubMed

32. Khan, S. R., Farooqi, Z. H., Waheed-uz-Zaman, Ali, A., Begum, R., Kanwal, F., Siddiq, M. Mater. Chem. Phys. 2016, 171, 318. https://doi.org/10.1016/j.matchemphys.2016.01.023.Suche in Google Scholar

33. Parasuraman, D., Sarker, A. K., Serpe, M. J. Colloid Polym. Sci. 2013, 291, 1795. https://doi.org/10.1007/s00396-013-2915-z.Suche in Google Scholar

34. Chen, J. J., Ahmad, A. L., Ooi, B. S. J. Environ. Chem. Eng. 2013, 1, 339. https://doi.org/10.1016/j.jece.2013.05.012.Suche in Google Scholar

35. Parasuraman, D., Serpe, M. J. ACS Appl. Mater. Interfaces 2011, 3, 4714. https://doi.org/10.1021/am201132x.Suche in Google Scholar PubMed

36. Begum, R., Farooqi, Z. H., Butt, Z., Wu, Q., Wu, W., Irfan, A. J. Environ. Sci. 2018, 72, 43. https://doi.org/10.1016/j.jes.2017.12.003.Suche in Google Scholar PubMed

37. Zettsu, N., McLellan, J. M., Wiley, B., Yin, Y., Li, Z., Xia, Y. Angew. Chem. 2006, 118, 1310. https://doi.org/10.1002/ange.200503174.Suche in Google Scholar

38. Lyubimov, S. E., Rastorguev, E. A., Lubentsova, K. I., Korlyukov, A. A., Davankov, V. A. Tetrahedron Lett. 2013, 54, 1116. https://doi.org/10.1016/j.tetlet.2012.12.063.Suche in Google Scholar

39. Bhorali, N., Ganguli, J. N. Catal. Lett. 2013, 143, 276. https://doi.org/10.1007/s10562-012-0956-4.Suche in Google Scholar

40. Ayad, A. I., Luart, D., Dris, A. O., Guénin, E. Nanomaterials 2020, 10, 1169. https://doi.org/10.3390/nano10061169.Suche in Google Scholar PubMed PubMed Central

41. Roa, R., Angioletti-Uberti, S., Lu, Y., Dzubiella, J., Piazza, F., Ballauf, M. Z. Phys. Chem. 2018, 232, 773. https://doi.org/10.1515/zpch-2017-1078.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2020-1718).


Received: 2020-07-18
Accepted: 2021-04-07
Published Online: 2021-04-22
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Review Article
  3. Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability
  4. Original Papers
  5. Electrooxidation of 2-propanol on the mixture of nanoparticles of Pt and RuO2 supported on Ti
  6. Synthesis, characterization and photocatalytic application of Sophora mollis leaf extract mediated silver nanoparticles
  7. Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye
  8. Degradation of moxifloxacin by ionizing radiation and toxicity assessment
  9. Adsorptive removal of methylene blue (MB) and malachite green (MG) dyes from aqueous solutions using graphene oxide (GO)
  10. Oat extract as a natural alkaline scale inhibitor for carbon steel in seawater: electrochemical (AC and DC) studies
  11. Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts
  12. Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources
  13. Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol
  14. Biochar caged zirconium ferrite nanocomposites for the adsorptive removal of Reactive Blue 19 dye in a batch and column reactors and conditions optimizaton
  15. Impact of salts on the phase separation and thermodynamic properties of mixed nonionic surfactants in absence/attendance of polyvinyl alcohol
  16. Can optical fiber compete with profile analysis tensiometry in critical micelle concentration measurement?
  17. Experimental and theoretical study on the hydrogen bond interactions between ascorbic acid and glycine
  18. Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane
  19. Cobalt doping of nickel ferrites via sol gel approach: effect of doping on the structural and dielectric properties
  20. Determination of pseudo-refractive index in self-assembled ligand layers from spectral shift of surface plasmon resonances in colloidal silver nanoplates
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1718/html
Button zum nach oben scrollen