Abstract
Perovskite solar cells (PSC) comprising of organic–inorganic lead halide composition have been considered as the future candidates for substituting the costly crystalline silicon-based solar cells if the challenges of efficiency and stability are adequately addressed. PSCs have been known for the employment of costly materials serving as electron transport, hole transport layers and back contact electrode such as gold, silver, or aluminum, needing thermal deposition in high vacuum ambiance. Metallic electrodes have been observed as not robust and thus, prone to quick degradation hindering the overall photovoltaic functionality of PSC devices. Carbon-modified PSCs via utilization of carbon nanotubes (CNTs) have been a favorable choice in terms of longer stability and efficiency. Considering the overpowering potential of CNTs in transforming PSC device functionality, current review has been designed to elucidate the most recent progressions carried out in utilization of CNTs in PSCs. Furthermore, this review focussed a critical view on the utilization of CNTs-based PSCs for lower fill factors and other photovoltaic parameters in addition to the account of ways to solve these concerns. Photovoltaic community researchers need to develop cost effective methods for resolving the lower efficiencies and fill factors associated with use of CNTs and can further explore different novel materials to successfully modify CNTs for employment in PSCs.
Acknowledgements
This review article is the intellectual property right of Dr. Khuram Shahzad Ahmad and Lab-E-21, Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, Pakistan and except for the images which have been reprinted with permission.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] Ijaz, M., Zafar, M., Iqbal, T., Inorg, T. Nano-Metal Chem. 2020, 1, 1–12; https://doi.org/10.1080/24701556.2020.1808680.Search in Google Scholar
[2] Afsheen, S., Naseer, H., Iqbal, T., Abrar, M., Bashir, A., Ijaz, M. Mater. Chem. Phys. 2020, 1, 123216; https://doi.org/10.1016/j.matchemphys.2020.123216.Search in Google Scholar
[3] Ijaz, M., Zafar, M., Islam, A., Afsheen, S., Iqbal, T. J. Inorg. Organomet. Polym. 2020, 30, 2815–2826; https://doi.org/10.1007/s10904-020-01603-9.Search in Google Scholar
[4] Ijaz, M., Zafar, M., Afsheen, S., Iqbal, T., Inorg, T. J. Organomet. Polym. 2020, 1, 1–8.Search in Google Scholar
[5] Tahir, M. B., Malik, M. F., Ahmed, A., Nawaz, T., Ijaz, M., Min, H. S., Siddeeg, S. M. Int. J. Environ. Anal. Chem. 2020, 1, 1–17; https://doi.org/10.1080/03067319.2019.1700970.Search in Google Scholar
[6] Shaheen, I., Ahmad, K. S., Zequine, C., Gupta, R. K., Thomas, A. G., Malik, M. A. Int. J. Energy Res. 2020, 44, 5259–5271; https://doi.org/10.1002/er.5270.Search in Google Scholar
[7] Zahra, T., Ahmad, K. S. Optik 2020, 205, 164241; https://doi.org/10.1016/j.ijleo.2020.164241.Search in Google Scholar
[8] Zafar, A., Ahmad, K. S., Jaffri, S. B., Sohail, M. Phosphorus, Sulfur Silicon Relat. Elem. 2020, 1, 1–11.Search in Google Scholar
[9] Siraj, H., Ahmad, K. S., Jaffri, S. B., Sohail, M. Microelectron. Eng. 2020, 233, 111400; https://doi.org/10.1016/j.mee.2020.111400.Search in Google Scholar
[10] Jaffri, S. B., Ahmad, K. S. Environ. Sci. Pollut. Res. 2020, 1, 1–17.Search in Google Scholar
[11] Jaffri, S. B., Ahmad, K. S. Green Process. Synth. 2019, 8, 172–182; https://doi.org/10.1515/gps-2018-0058.Search in Google Scholar
[12] Jaffri, S. B., Ahmad, K. S. Rev. Inorg. Chem. 2018, 38, 127–149; https://doi.org/10.1515/revic-2018-0004.Search in Google Scholar
[13] Ahmad, K. S., Naqvi, S. N., Jaffri, S. B. Rev. Inorg. Chem. 2020, 1, 1–20; https://doi.org/10.1080/03067319.2020.1837121.Search in Google Scholar
[14] Ahmad, W., He, J., Liu, Z., Xu, K., Chen, Z., Yang, X., Chen, C. Adv. Mater. 2019, 31, 1900593; https://doi.org/10.1002/adma.201900593.Search in Google Scholar PubMed
[15] Holliman, P. J., Kershaw, C. P., Jones, E. W., Meza-Rojas, D., Lewis, A., McGettrick, J., Coles, S. J. J. Mater. Chem. A 2020, 1, 1–10.Search in Google Scholar
[16] Classen, A., Chochos, C. L., Lüer, L., Gregoriou, V. G., Wortmann, J., Osvet, A., Brabec, C. J. Nat. Energy. 2020, 5, 711–719; https://doi.org/10.1038/s41560-020-00684-7.Search in Google Scholar
[17] Jaffri, S. B., Ahmad, K. S. Crit. Rev. Solid State Mater. Sci. 2020, 1, 1–29; https://doi.org/10.1080/10408436.2020.1758627.Search in Google Scholar
[18] Andrei, V., Bethke, K., Rademann, K. Energy Environ. Sci. 2016, 9, 1528–1532; https://doi.org/10.1039/c6ee00247a.Search in Google Scholar
[19] Feng, X., Zhang, Y., Kang, L., Wang, L., Duan, C., Yin, K., Wang, K. Front. Chem. Sci. Eng. 2020, 1, 1–13.Search in Google Scholar
[20] Flores-Quintero, R. R., Flores-Verdad, G. E., Gonzalez-Diaz, V. R., Carrillo-Martinez, L. A. Microelectron. J. 2020, 1, 104736; https://doi.org/10.1016/j.mejo.2020.104736.Search in Google Scholar
[21] Nwaigwe, K. N., Mutabilwa, P., Dintwa, E. Mater. Sci. Energy Technol. 2019, 2, 629; https://doi.org/10.1016/j.mset.2019.07.002.Search in Google Scholar
[22] Brittman, S., Adhyaksa, G. W., Garnett, E. C. MRS Commun. 2015, 5, 7–26; https://doi.org/10.1557/mrc.2015.6.Search in Google Scholar PubMed PubMed Central
[23] Green, M. A., Ho-Baillie, A., Snaith, H. J. Nat. Photonics 2014, 8, 506; https://doi.org/10.1038/nphoton.2014.134.Search in Google Scholar
[24] Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., Guo, Z. Acta Crystallogr., Sect. B 2008, 64, 702–707; https://doi.org/10.1107/s0108768108032734.Search in Google Scholar PubMed
[25] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J.-H., Moser, J. E., Grätzel, M., Park, N.-G. Sci. Rep. 2012, 2, 591; https://doi.org/10.1038/srep00591.Search in Google Scholar PubMed PubMed Central
[26] Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A., Snaith, H. J. Science 2013, 342, 341; https://doi.org/10.1126/science.1243982.Search in Google Scholar
[27] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Grätzel, M. Nature 2013, 499, 316; https://doi.org/10.1038/nature12340.Search in Google Scholar
[28] Liu, M., Johnston, M. B., Snaith, H. J. Nature 2013, 501, 395; https://doi.org/10.1038/nature12509.Search in Google Scholar
[29] Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T. Y., Noh, J. H., Seo, J. Nature 2019, 567, 511–515; https://doi.org/10.1038/s41586-019-1036-3.Search in Google Scholar
[30] Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J. Nat. Photonics 2019, 13, 460–466; https://doi.org/10.1038/s41566-019-0398-2.Search in Google Scholar
[31] Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cellefficiencies.20200406.pdf.Search in Google Scholar
[32] National Renewable Energy Laboratory. Best research-cell efficiency chart (2020). www.nrel.gov/pv/cell-efficiency.html.Search in Google Scholar
[33] Turren-Cruz, S. H., Hagfeldt, A., Saliba, M. Science 2018, 362, 449–453; https://doi.org/10.1126/science.aat3583.Search in Google Scholar
[34] Weber, D. Z. Naturforsch. B Chem. Sci. 1978, 33, 1443; https://doi.org/10.1515/znb-1978-1214.Search in Google Scholar
[35] Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G., Cahen, D. Nat. Rev. Mater. 2016, 1, 15007; https://doi.org/10.1038/natrevmats.2015.7.Search in Google Scholar
[36] Manser, J. S., Christians, J. A., Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956; https://doi.org/10.1021/acs.chemrev.6b00136.Search in Google Scholar
[37] Ishihara, T., Hong, X., Ding, J., A. V. Surf. Sci. 1992, 267, 323; https://doi.org/10.1016/0039-6028(92)91147-4.Search in Google Scholar
[38] Hanamura, E., Nagaosa, N., Kumagai, M., Takagahara, T. Mater. Sci. Eng., B 1988, 1, 255; https://doi.org/10.1016/0921-5107(88)90006-2.Search in Google Scholar
[39] Mitzi, D. B., Dimitrakopoulos, C. D., Rosner, J., Medeiros, D. R., Xu, Z., Noyan, C. Adv. Mater. 2002, 14, 1772; https://doi.org/10.1002/1521-4095(20021203)14:23<1772::aid-adma1772>3.0.co;2-y.10.1002/1521-4095(20021203)14:23<1772::AID-ADMA1772>3.0.CO;2-YSearch in Google Scholar
[40] Im, J. H., Jang, I. H., Pellet, N., Gratzel, M., Park, N. G. Nat. Tech. 2014, 9, 927; https://doi.org/10.1038/nnano.2014.181.Search in Google Scholar
[41] Yin, W. J., Shi, T., Yan, Y. Appl. Phys. Lett. 2014, 104, 063903; https://doi.org/10.1063/1.4864778.Search in Google Scholar
[42] Brivio, F., Walker, A. B., Walsh, A. APL Mater. 2013, 1, 042111; https://doi.org/10.1063/1.4824147.Search in Google Scholar
[43] Liu, F., Zhu, J., Wei, J., Li, Y., Lv, M., Yang, S., Zhang, B., Yao, J., Dai, S. Appl. Phys. Lett. 2014, 104, 25358; https://doi.org/10.1063/1.4885367.Search in Google Scholar
[44] Meng, L., You, J., Yang, Y. Nat. Commun. 2018, 9, 5265; https://doi.org/10.1038/s41467-018-07255-1.Search in Google Scholar
[45] Xu, J., Li, X., Xiong, J., Yuan, C., Semin, S., Rasing, T., Bu, X. H. Adv. Mater. 2020, 32, 1806736; https://doi.org/10.1002/adma.201806736.Search in Google Scholar
[46] Shi, B., Duan, L., Zhao, Y., Luo, J., Zhang, X. Adv. Mater. 2020, 32, 1806474; https://doi.org/10.1002/adma.201806474.Search in Google Scholar
[47] Zeng, Z., Xu, Y., Zhang, Z., Gao, Z., Luo, M., Yin, Z., Du, Y. Chem. Soc. Rev. 2020, 49, 1109–1143; https://doi.org/10.1039/c9cs00330d.Search in Google Scholar
[48] Yu, X., Tsao, H. N., Zhang, Z., Gao, P. Adv. Opt. Mater. 2020, 1, 2001095; https://doi.org/10.1002/adom.202001095.Search in Google Scholar
[49] Li, C., Ma, Y., Xiao, Y., Shen, L., Ding, L. InfoMat 2020, 2, 1247–1256; https://doi.org/10.1002/inf2.12141.Search in Google Scholar
[50] Mathies, F., List-Kratochvil, E. J., Unger, E. L. Energy Tech. 2020, 8, 1900991; https://doi.org/10.1002/ente.201900991.Search in Google Scholar
[51] Andrei, V., Hoye, R. L., Crespo‐Quesada, M., Bajada, M., Ahmad, S., De Volder, M., Reisner, E. Adv. Energy Mater. 2018, 8, 1801403; https://doi.org/10.1002/aenm.201801403.Search in Google Scholar
[52] Andrei, V., Reuillard, B., Reisner, E. Nat. Mater. 2020, 19, 189–194; https://doi.org/10.1038/s41563-019-0501-6.Search in Google Scholar PubMed
[53] Rahaman, M., Andrei, V., Pornrungroj, C., Wright, D., Baumberg, J. J., Reisner, E. Energy Environ. Sci. 2020, 13, 3536–3543; https://doi.org/10.1039/d0ee01279c.Search in Google Scholar
[54] Zhong, J. X., Wu, W. Q., Liao, J. F., Feng, W., Jiang, Y., Wang, L., Kuang, D. B. Adv. Energy Mater. 2020, 10, 1902256; https://doi.org/10.1002/aenm.201902256.Search in Google Scholar
[55] Shellaiah, M., Sun, K. W. Chemosensors 2020, 8, 55; https://doi.org/10.3390/chemosensors8030055.Search in Google Scholar
[56] Song, Z., Li, C., Chen, C., McNatt, J., Yoon, W., Scheiman, D., Jenkins, P. P., Ellingson, R. J., Heben, M. J., Yan, Y. J. Phys. Chem. C 2019, 124, 1330–1336; https://doi.org/10.1021/acs.jpcc.9b11483.Search in Google Scholar
[57] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050–6051; https://doi.org/10.1021/ja809598r.Search in Google Scholar PubMed
[58] Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., Park, N. G. Nanoscale 2011, 3, 4088; https://doi.org/10.1039/c1nr10867k.Search in Google Scholar PubMed
[59] Jeon, C., Delacou, A., Kaskela, E. I., Kauppinen, S., Maruyama, Y., Matsuo, Y. Sci. Rep. 2016, 6, 31348; https://doi.org/10.1038/srep31348.Search in Google Scholar PubMed PubMed Central
[60] Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., Angelis, F. D. Adv. Energy Mater. 2015, 15, 1500477; https://doi.org/10.1002/aenm.201500477.Search in Google Scholar
[61] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I. Nature 2015, 517, 476; https://doi.org/10.1038/nature14133.Search in Google Scholar PubMed
[62] Chu, L., Ahmad, W., Liu, W., Yang, J., Zhang, R., Sun, Y., Li, X. Nano-Micro Lett. 2019, 11, 1–20; https://doi.org/10.1007/s40820-019-0244-6.Search in Google Scholar PubMed PubMed Central
[63] Jiang, Y., Qiu, L., Juarez-Perez, E. J., Ono, L. K., Hu, Z., Liu, Z., Qi, Y. Nat. Energy 2019, 4, 585–593; https://doi.org/10.1038/s41560-019-0406-2.Search in Google Scholar
[64] Li, J., Cao, H. L., Jiao, W. B., Wang, Q., Wei, M., Cantone, I., Abate, A. Nat. Commun. 2020, 11, 1–5; https://doi.org/10.1038/s41467-019-13910-y.Search in Google Scholar PubMed PubMed Central
[65] Nie, R., Sumukam, R. R., Reddy, S. H., Banavoth, M., Seok, S. I. Energy Environ. Sci. 2020, 13, 2363–2385; https://doi.org/10.1039/d0ee01153c.Search in Google Scholar
[66] Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G., Cahen, D. J. Phys. Chem. Lett. 2015, 6, 1543–1547; https://doi.org/10.1021/acs.jpclett.5b00504.Search in Google Scholar PubMed
[67] Lead Laws and Regulations; Environmental Protection Agency. 2019. https://www.epa.gov/lead/lead-laws-and-regulations.Search in Google Scholar
[68] Li, X., Zhang, F., He, H., Berry, J. J., Zhu, K., Xu, T. On-device lead sequestration for perovskite solar cells. Nature 2020, 578, 555–558; https://doi.org/10.1038/s41586-020-2001-x.Search in Google Scholar PubMed
[69] Hu, W., He, X., Fang, Z., Lian, W., Shang, Y., Li, X., Zhou, W., Zhang, M., Chen, T., Lu, Y., Zhang, L., Ding, L., Yang, S. Nano Energy 2020, 68, 104362; https://doi.org/10.1016/j.nanoen.2019.104362.Search in Google Scholar
[70] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Firsov, A. A. Science 2004, 306, 666; https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed
[71] Maheshwari, P. H. Mater. Sci. Energy Tech. 2019, 2, 490; https://doi.org/10.1016/j.mset.2019.04.004.Search in Google Scholar
[72] Iqbal, S., Khatoon, H., Pandit, A. H., Ahmad, S. Mater. Sci. Energy Tech. 2019, 2, 417; https://doi.org/10.1016/j.mset.2019.04.006.Search in Google Scholar
[73] Yan, J., Uddin, M. J., Dickens, T. J., Okoli, O. I. Sol. Energy 2013, 96, 239; https://doi.org/10.1016/j.solener.2013.07.027.Search in Google Scholar
[74] Javed, M., Abbas, S. M., Hussain, S., Siddiq, M., Han, D., Niu, L. Mater. Sci. Energy Tech. 2018, 1, 70; https://doi.org/10.1016/j.mset.2018.03.002.Search in Google Scholar
[75] Li, P., Li, Y., Zhang, Z., Chen, J., Li, Y., Ma, Y. Mater. Sci. Energy Tech. 2018, 1, 91; https://doi.org/10.1016/j.mset.2018.06.001.Search in Google Scholar
[76] Ku, Z., Rong, Y., Xu, M., Liu, T., Han, H. Sci. Rep. 2013, 3, 3132; https://doi.org/10.1038/srep03132.Search in Google Scholar PubMed PubMed Central
[77] Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Grätzel, M. Science 2014, 345, 295; https://doi.org/10.1126/science.1254763.Search in Google Scholar PubMed
[78] Baranwal, A. K., Kanaya, S., Peiris, T. N., Mizuta, G., Nishina, T., Kanda, H., Ito, S. ChemSusChem 2016, 9, 2604; https://doi.org/10.1002/cssc.201600933.Search in Google Scholar PubMed
[79] Lee, K., Kim, J., Yu, H., Lee, J. W., Yoon, C. M., Kim, S. K., Jang, J. J. Mater. Chem. A 2018, 6, 24560; https://doi.org/10.1039/c8ta09433k.Search in Google Scholar
[80] Habisreutinger, S. N., Nicholas, R. J., Snaith, H. J. Adv. Energy Mater. 2017, 7, 1601839; https://doi.org/10.1002/aenm.201601839.Search in Google Scholar
[81] Aitola, K., Sveinbjörnsson, K., Correa-Baena, J. P., Kaskela, A., Abate, A., Tian, Y., Johansson, E. M., Grätzel, M., Kauppinen, E. I., Hagfeldt, A., Boschloo, G. Energy Environ. Sci. 2016, 9, 461–466; https://doi.org/10.1039/c5ee03394b.Search in Google Scholar
[82] Aitola, K., Domanski, K., Correa‐Baena, J. P., Sveinbjörnsson, K., Saliba, M., Abate, A., Grätzel, M., Kauppinen, E., Johansson, E. M., Tress, W. Adv. Mater. 2017, 29, 1606398; https://doi.org/10.1002/adma.201606398.Search in Google Scholar
[83] Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., Gu, Z. Nano Lett. 2008, 8, 2664; https://doi.org/10.1021/nl800925j.Search in Google Scholar
[84] Zhou, W., Bai, X., Wang, E., Xie, S. Adv. Mater. 2009, 21, 4565; https://doi.org/10.1002/adma.200901071.Search in Google Scholar
[85] Sakaguchi, T., Jeon, I., Chiba, T., Shawky, A., Xiang, R., Chiashi, S., Maruyama, S. MRS Commun. 2018, 8, 1058; https://doi.org/10.1557/mrc.2018.142.Search in Google Scholar
[86] Jeon, C. D., Okada, H., Morse, G. E., Han, T.-H., Sato, Y., Anisimov, A., Suenaga, K., Kauppinen, E. I., Maruyama, S., Matsuo, Y. J. Mater. Chem. A 2018, 6, 14553; https://doi.org/10.1039/c8ta03383h.Search in Google Scholar
[87] Delacou, C., Jeon, I., Seo, S., Nakagawa, T., Kauppinen, E. I., Maruyama, S., Matsuo, Y. ECS J. Solid State Sci. Technol. 2017, 6, M3181; https://doi.org/10.1149/2.0311706jss.Search in Google Scholar
[88] Ago, H., Petritsch, K., Shaffer, M. S., Windle, A. H., Friend, R. H. Adv. Mater. 1999, 11, 1281; https://doi.org/10.1002/(sici)1521-4095(199910)11:15<1281::aid-adma1281>3.0.co;2-6.10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6Search in Google Scholar
[89] Berson, S., de Bettignies, R., Bailly, S., Guillerez, S., Jousselme, B., Cells, P., Berson, B. S., De Bettignies, R., Bailly, S., Guillerez, S., Jousselme, B. Adv. Funct. Mater. 2007, 17, 3363; https://doi.org/10.1002/adfm.200700438.Search in Google Scholar
[90] Jeon, I., Kutsuzawa, D., Hashimoto, Y., Yanase, T., Nagahama, T., Shimada, T., Matsuo, Y. Org. Electron. 2015, 17, 275; https://doi.org/10.1016/j.orgel.2014.12.025.Search in Google Scholar
[91] Yan, J., Uddin, M. J., Dickens, T. J., Daramola, D. E., Okoli, O. I. Adv. Mater. Inter. 2014, 1, 1400075; https://doi.org/10.1002/admi.201400075.Search in Google Scholar
[92] Deng, J., Qiu, L., Lu, X., Yang, Z., Guan, G., Zhang, Z., Peng, H. J. Mater. Chem. A 2015, 3, 21070; https://doi.org/10.1039/c5ta06156c.Search in Google Scholar
[93] Aitola, K., Sveinbjö rnsson, K., Correa-Baena, J. P., Kaskela, A., Abate, A., Tian, Y., Johansson, E. M., Grätzel, M., Kauppinen, E. I., Hagfeldt, A. Energy Environ. Sci. 2016, 9, 461; https://doi.org/10.1039/c5ee03394b.Search in Google Scholar
[94] Chen, T., Qiu, L., Cai, Z., Gong, F., Yang, Z., Wang, Z., Peng, H. Nano Lett. 2012, 12, 2568; https://doi.org/10.1021/nl300799d.Search in Google Scholar PubMed
[95] Uddin, M. J., Davies, B., Dickens, T. J., Okoli, O. I. Sol. Energy Mater. Sol. Cells 2013, 115, 166; https://doi.org/10.1016/j.solmat.2013.03.025.Search in Google Scholar
[96] Zhu, H., Wei, J., Wang, K., Wu, D. Cells 2009, 93, 1461; https://doi.org/10.1016/j.solmat.2009.04.006.Search in Google Scholar
[97] Park, S., Vosguerichian, M., Bao, Z. Nanoscale 2013, 5, 1727; https://doi.org/10.1039/c3nr33560g.Search in Google Scholar PubMed
[98] Wang, F., Endo, M., Mouri, S., Miyauchi, Y., Ohno, Y., Wakamiya, A., Matsuda, K. Nanoscale 2016, 8, 11882; https://doi.org/10.1039/c6nr01152g.Search in Google Scholar PubMed
[99] Jeon, A. A., Kauppinen, E., Matsuo, Y., Maruyama, S. In Meeting Abstracts, Vol. 7; The Electrochemical Society, 2019, p. 626.10.1149/MA2019-01/7/626Search in Google Scholar
[100] Jeon, Y., Matsuo, Maruyama, S. In. Single-Walled Carbon Nanotubes; Springer: Cham, 2019, p. 271.10.1007/978-3-030-12700-8_10Search in Google Scholar
[101] Jeon, R., Xiang, Shawky, A., Matsuo, Y., Maruyama, S. Adv. Energy Mater. 2019, 9, 1801312; https://doi.org/10.1002/aenm.201801312.Search in Google Scholar
[102] Macdonald, T. J., Batmunkh, M., Lin, C., Kim, J., Tune, D. D., Amboz, F., Durrant, J. R. Small Methods 2019, 1, 1900164; https://doi.org/10.1002/smtd.201900164.Search in Google Scholar
[103] Park, N. G. Mater. Today 2015, 18, 65; https://doi.org/10.1016/j.mattod.2014.07.007.Search in Google Scholar
[104] Song, Z., McElvany, C. L., Phillips, A. B., Celik, I., Krantz, P. W., Watthage, S. C., Liyanage, G. K., Apul, D., Heben, M. J. Energy Environ. Sci. 2017, 10, 1297; https://doi.org/10.1039/c7ee00757d.Search in Google Scholar
[105] Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., Park, N. G. Nanoscale 2011, 3, 4088–4093; https://doi.org/10.1039/c1nr10867k.Search in Google Scholar PubMed
[106] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Grätzel, M. Sci. Rep. 2012, 2, 1–7; https://doi.org/10.1038/srep00591.Search in Google Scholar PubMed PubMed Central
[107] Salim, T., Sun, S., Abe, Y., Krishna, A., Grimsdale, A. C., Lam, Y. M. J. Mater. Chem. A 2015, 3, 8943; https://doi.org/10.1039/c4ta05226a.Search in Google Scholar
[108] He, M., Zheng, D., Wang, M., Lin, C., Lin, Z. J. Mater. Chem. A 2014, 2, 5994; https://doi.org/10.1039/c3ta14160h.Search in Google Scholar
[109] Mesquita, A., Andrade, L., Mendes, A. Renew. Sustain. Energy Rev. 2018, 82, 2471; https://doi.org/10.1016/j.rser.2017.09.011.Search in Google Scholar
[110] Niu, G., Guo, X., Wang, L. J. Mater. Chem. A 2015, 3, 8970; https://doi.org/10.1039/c4ta04994b.Search in Google Scholar
[111] Fu, R., Zhou, W., Li, Q., Zhao, Y., Yu, D., Zhao, Q. ChemNanoMat 2019, 5, 253; https://doi.org/10.1002/cnma.201800503.Search in Google Scholar
[112] Bisquert, J., Juarez-Perez, E. J. J. Phys. Chem. Lett. 2019, 10, 5889; https://doi.org/10.1021/acs.jpclett.9b00613.Search in Google Scholar PubMed
[113] Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., Snaith, H. J. J. Phys. Chem. Lett. 2014, 5, 4207; https://doi.org/10.1021/jz5021795.Search in Google Scholar PubMed
[114] Ihly, R., Dowgiallo, A. M., Yang, M., Schulz, P., Stanton, N. J., Reid, O. G., Ferguson, A. J., Zhu, K., Berry, J. J., Blackburn, J. L. Energy Environ. Sci. 2016, 9, 1439–1449; https://doi.org/10.1039/c5ee03806e.Search in Google Scholar
[115] Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M. Science 2014, 345, 295; https://doi.org/10.1126/science.1254763.Search in Google Scholar PubMed
[116] Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M. Materials 2017, 10, 1066; https://doi.org/10.3390/ma10091066.Search in Google Scholar PubMed PubMed Central
[117] Aitola, K., Kaskela, A., Halme, J., Ruiz, V., Nasibulin, A. G., Kauppinen, E. I., Lund, P. D. J. Electrochem. Soc. 2010, 157, 1831–1837; https://doi.org/10.1149/1.3500367.Search in Google Scholar
[118] Aitola, K., Halme, J., Feldt, S., Lohse, P., Borghei, M., Kaskela, A., Nasibulin, A. G., Kauppinen, E. I., Lund, P. D., Boschloo, G., Hagfeldt, A. Electrochim. Acta 2013, 30, 206; https://doi.org/10.1016/j.electacta.2013.07.202.Search in Google Scholar
[119] Pasquier, A. D., Unalan, H. E., Kanwal, A., Miller, S., Chhowalla, M. Appl. Phys. Lett. 2005, 87, 203511; https://doi.org/10.1063/1.2132065.Search in Google Scholar
[120] Mustonen, K., Laiho, P., Kaskela, A., Susi, T., Nasibulin, A. G., Kauppinen, E. I. Appl. Phys. Lett. 2015, 107, 143113; https://doi.org/10.1063/1.4932942.Search in Google Scholar
[121] Wang, X., Li, Z., Xu, W., Kulkarni, S. A., Batabyal, S. K., Zhang, S., Cao, A., Wong, L. H. Nano Energy 2015, 11, 728; https://doi.org/10.1016/j.nanoen.2014.11.042.Search in Google Scholar
[122] Cai, M., Tiong, V. T., Hreid, T., Bell, J., Wang, H. J. Mater. Chem. A 2015, 3, 2784; https://doi.org/10.1039/c4ta04997g.Search in Google Scholar
[123] Li, H., Cao, K., Cui, J., Liu, S., Qiao, X., Shen, Y., Wang, M. Nanoscale 2016, 8, 6379; https://doi.org/10.1039/c5nr07347b.Search in Google Scholar PubMed
[124] Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., Snaith, H. J. Nano Lett. 2014, 14, 5561; https://doi.org/10.1021/nl501982b.Search in Google Scholar PubMed
[125] Lee, J. M., Park, J. S., Lee, S. H., Kim, H., Yoo, S., Kim, S. O. Adv. Mater. 2011, 23, 629; https://doi.org/10.1002/adma.201003296.Search in Google Scholar PubMed
[126] Ryu, J., Lee, K., Yun, J., Yu, H., Lee, J., Jang, J. Small 2017, 13, 1701225; https://doi.org/10.1002/smll.201701225.Search in Google Scholar PubMed
[127] Luo, Q., Ma, H., Hao, F., Hou, Q., Ren, J., Wu, L., Yao, Z., Zhou, Y., Wang, N., Jiang, K., Lin, H. Adv. Funct. Mater. 2017, 27, 1703068; https://doi.org/10.1002/adfm.201703068.Search in Google Scholar
[128] Chiba, J. T., Delacou, C., Guo, Y., Kaskela, A., Reynaud, O., Matsuo, Y. Nano Lett. 2015, 15, 6665.10.1021/acs.nanolett.5b02490Search in Google Scholar PubMed
[129] Jeon, J., Yoon, N., Ahn, M., Atwa, C., Delacou, A., Anisimov, Matsuo, Y. J. Phys. Chem. Lett. 2017, 8, 5395; https://doi.org/10.1021/acs.jpclett.7b02229.Search in Google Scholar PubMed
[130] Zheng, X., Chen, H., Wei, Z., Yang, Y., Lin, H., Yang, S. Front. Optoelectron. 2016, 9, 71; https://doi.org/10.1007/s12200-016-0566-7.Search in Google Scholar
[131] Bag, M., Renna, L. A., Jeong, S. P., Han, X., Cutting, C. L., Maroudas, D., Venkataraman, D. Chem. Phys. Lett. 2016, 662, 35–41; https://doi.org/10.1016/j.cplett.2016.09.004.Search in Google Scholar
[132] Batmunkh, M., Macdonald, T. J., Shearer, C. J., Bat-Erdene, M., Wang, Y., Biggs, M. J., Shapter, J. G. Adv. Sci. 2017, 4, 1600504; https://doi.org/10.1002/advs.201600504.Search in Google Scholar PubMed PubMed Central
[133] Batmunkh, M., Shearer, C. J., Bat-Erdene, M., Biggs, M. J., Shapter, J. G. ACS Appl. Mater. Interfaces 2017, 9, 19945; https://doi.org/10.1021/acsami.7b04894.Search in Google Scholar PubMed
[134] Tiong, V. T., Pham, N. D., Wang, T., Zhu, T., Zhao, X., Zhang, Y., Wang, H. Adv. Funct. Mater. 2018, 28, 1705545; https://doi.org/10.1002/adfm.201705545.Search in Google Scholar
[135] Wei, Z., Chen, H., Yan, K., Zheng, X., Yang, S. J. Mater. Chem. A 2015, 3, 24226; https://doi.org/10.1039/c5ta07714a.Search in Google Scholar
[136] Luo, Q., Ma, H., Zhang, Y., Yin, X., Yao, Z., Wang, N., Li, J., Fan, S., Jiang, K., Lin, H. J. Mater. Chem. A 2016, 15, 5569; https://doi.org/10.1039/c6ta01715k.Search in Google Scholar
[137] Li, Z., Kulkarni, S. A., Boix, P. P., Shi, E., Cao, A., Fu, K., Batabyal, S. K., Zhang, J., Xiong, Q., Wong, L. H., Mathews, N. ACS Nano 2014, 8, 6797; https://doi.org/10.1021/nn501096h.Search in Google Scholar PubMed
[138] Hashmi, S. G., Martineau, D., Li, X., Ozkan, M., Tiihonen, A., Dar, M. I., Grätzel, M. Adv. Mater. Tech. 2017, 2, 1600183; https://doi.org/10.1002/admt.201600183.Search in Google Scholar
[139] Chang, X., Li, W., Zhu, L., Liu, H., Geng, H., Xiang, S., Chen, H. ACS Appl. Mater. Interfaces 2016, 8, 33649; https://doi.org/10.1021/acsami.6b11393.Search in Google Scholar PubMed
[140] Gatti, T., Casaluci, S., Prato, M., Salerno, M., Di Stasio, F., Ansaldo, A., Bonaccorso, F. Adv. Funct. Mater. 2016, 26, 7443; https://doi.org/10.1002/adfm.201602803.Search in Google Scholar
[141] Wu, Z., Liu, Z., Hu, Z., Hawash, Z., Qiu, L., Jiang, Y., Qi, Y. Adv. Mater. 2019, 31, 1804284; https://doi.org/10.1002/adma.201804284.Search in Google Scholar PubMed
[142] Arora, N., Dar, M. I., Akin, S., Uchida, R., Baumeler, T., Liu, Y., Grätzel, M. Small 2019, 1, 1.Search in Google Scholar
[143] Zong, A., Fu, W., Guo, Z. A., Wang, S., Huang, L., Zhang, B., Zhang, Z. J. Colloid Interface Sci. 2019, 540, 315; https://doi.org/10.1016/j.jcis.2019.01.035.Search in Google Scholar PubMed
[144] Zhou, J., Hou, J., Tao, X., Meng, X., Yang, S. J. Mater. Chem. A 2019, 7, 7710; https://doi.org/10.1039/c9ta00118b.Search in Google Scholar
[145] Chu, Q. Q., Ding, B., Peng, J., Shen, H., Li, X., Liu, Y., Catchpole, K. R. J. Mater. Sci. Technol. 2019, 35, 987; https://doi.org/10.1016/j.jmst.2018.12.025.Search in Google Scholar
[146] Bashir, A., Haur, L. J., Shukla, S., Gupta, D., Baikie, T., Chakraborty, S., Akhter, Z. Sol. Energy 2019, 182, 225; https://doi.org/10.1016/j.solener.2019.02.056.Search in Google Scholar
[147] Zhou, J., Wu, J., Li, N., Li, X., Zheng, Y. Z., Tao, X. J. Mater. Chem. A 2019, 7, 17594; https://doi.org/10.1039/c9ta05744g.Search in Google Scholar
[148] Arora, N., Dar, M. I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S. M., Grätzel, M. Science 2017, 358, 768–771; https://doi.org/10.1126/science.aam5655.Search in Google Scholar PubMed
[149] Wu, X., Xie, L., Lin, K., Lu, J., Wang, K., Feng, W., Fan, B., Yin, P. G., Wei, Z. J. Mater. Chem. A 2019, 1, 1–10.Search in Google Scholar
[150] Lee, J. W., Jeon, I., Lin, H., Seo, S., Han, T. H., Anisimov, A., Kauppinen, E. I., Matsuo, Y., Maruyama, S., Yang, Y. Nano Lett. 2019, 19, 2223; https://doi.org/10.1021/acs.nanolett.8b04190.Search in Google Scholar PubMed
[151] Yoon, S., Ha, S. R., Moon, T., Jeong, S. M., Ha, T. J., Choi, H., Kang, D. W. J. Power Sources 2019, 435, 226765; https://doi.org/10.1016/j.jpowsour.2019.226765.Search in Google Scholar
[152] Mohammed, M. K. Ceram. Int. 2019, 46, 27647–27654.10.1016/j.ceramint.2020.07.260Search in Google Scholar
[153] Siva, U., Murugathas, T., Yohi, S., Natarajan, M., Velauthapillai, D., Ravirajan, P. Mater. Lett. 2020, 276, 128174; https://doi.org/10.1016/j.matlet.2020.128174.Search in Google Scholar
[154] Tang, H., Cao, Q., He, Z., Wang, S., Han, J., Li, T., Li, X. Solar RRL 2020, 4, 1900415; https://doi.org/10.1002/solr.201900415.Search in Google Scholar
[155] Ryu, J., Yoon, S., Park, J., Jeong, S. M., Kang, D. W. Appl. Surf. Sci. 2020, 1, 146116; https://doi.org/10.1016/j.apsusc.2020.146116.Search in Google Scholar
[156] Qian, Y., Seo, S., Jeon, I., Lin, H., Okawa, S., Zheng, Y., Xiang, R. Appl. Phys. Express 2020, 13, 075009; https://doi.org/10.35848/1882-0786/ab9efa.Search in Google Scholar
[157] Mohammed, M. K. RSC Adv. 2020, 10, 35831–35839; https://doi.org/10.1039/d0ra05975g.Search in Google Scholar PubMed PubMed Central
[158] Seo, S., Jeon, I., Xiang, R., Lee, C., Zhang, H., Tanaka, T., Maruyama, S. J. Mater. Chem. A 2019, 1, 1–10.Search in Google Scholar
[159] Lin, H. S., Okawa, S., Ma, Y., Yotsumoto, S., Lee, C., Tan, S., Tanaka, T. Chem. Mater. 2020, 1, 1–10.Search in Google Scholar
[160] AbdulAlmohsin, S. M., Tareq, D. E. AIMS Energy 2020, 8, 169.10.3934/energy.2020.2.169Search in Google Scholar
[161] Wang, Y., Li, W., Zhang, T., Li, D., Kan, M., Wang, X., Zhao, Y. Small Meth 2020, 4, 1900511; https://doi.org/10.1002/smtd.201900511.Search in Google Scholar
[162] Yang, Y., Chen, H., Hu, C., Yang, S. J. Mater. Chem. A 2019, 7, 22005–22011; https://doi.org/10.1039/c9ta08177a.Search in Google Scholar
[163] Uddin, M. J., Daramola, D. E., Velasquez, E., Dickens, T. J., Yan, J., Hammel, E., Cesano, F., Okoli, O. I. Phys. Status Solidi 2014, 8, 898–903; https://doi.org/10.1002/pssr.201409392.Search in Google Scholar
[164] Hussain, A., Chowdhury, R., Jaksik, J., Grissom, G., Touhami, A., Ibrahim, E. E., Schauer, M., Okoli, O., Uddin, M. J. Appl. Surf. Sci. 2019, 478, 327–33; https://doi.org/10.1016/j.apsusc.2019.01.233.Search in Google Scholar
[165] Zhou, Y., Azumi, R. Sci. Technol. Adv. Mater. 2016, 17, 493–516; https://doi.org/10.1080/14686996.2016.1214526.Search in Google Scholar PubMed PubMed Central
[166] Bati, A. S., Yu, L., Tawfik, S. A., Spencer, M. J., Shaw, P. E., Batmunkh, M., Shapter, J. G. iScience 2019, 1, 1–10.Search in Google Scholar
[167] Long, R. J. Phys. Chem. Lett. 2013, 4, 1340; https://doi.org/10.1021/jz400589v.Search in Google Scholar PubMed
[168] Dang, X., Yi, H., Ham, M. H., Qi, J., Yun, D. S., Ladewski, R., Strano, M. S., Hammond, P. T., Belcher, A. M. Nat. Nanotechnol. 2011, 6, 377; https://doi.org/10.1038/nnano.2011.50.Search in Google Scholar PubMed
[169] Sakaguchi, T., Jeon, I., Chiba, T., Shawky, A., Xiang, R., Chiashi, S., Kauppinen, E. I., Park, N. G., Matsuo, Y., Maruyama, S. MRS Commun. 2018, 8, 1058; https://doi.org/10.1557/mrc.2018.142.Search in Google Scholar
[170] Wang, Y., Zhao, H., Mei, Y., Liu, H., Wang, S., Li, X. ACS Appl. Mater. Interfaces 2018, 11, 916–923; https://doi.org/10.1021/acsami.8b18530.Search in Google Scholar PubMed
[171] Ahn, N., Jeon, I., Yoon, J., Kauppinen, E. I., Matsuo, Y., Maruyama, S., Choi, M. J. Mater. Chem. A 2018, 6, 1382; https://doi.org/10.1039/c7ta09174e.Search in Google Scholar
[172] Lee, J. W., Jeon, I., Lin, H. S., Seo, S., Han, T. H., Anisimov, A., Kauppinen, E. I., Matsuo, Y., Maruyama, S., Yang, Y. Nano Lett. 2018, 1, 1–10.Search in Google Scholar
[173] Wirtz, L., Rubio, A. In. InAIP Conference Proceed, Vol. 685, 2003, p. 402.10.1063/1.1628059Search in Google Scholar
[174] Zheng, X., Chen, H., Li, Q., Yang, Y., Wei, Z., Bai, Y., Qiu, Y., Zhou, D., Wong, K. S., Yang, S. Nano Lett. 2017, 17, 2496; https://doi.org/10.1021/acs.nanolett.7b00200.Search in Google Scholar PubMed
[175] Machui, F., Hösel, M., Li, N., Spyropoulos, G. D., Ameri, T., Søndergaard, R. R., Jørgensen, M., Scheel, A., Gaiser, D., Kreul, K., Lenssen, D. Energy Environ. Sci. 2014, 7, 2792; https://doi.org/10.1039/c4ee01222d.Search in Google Scholar
[176] Robinson, K., Durkin, W. IEEE Trans. Ind. Appl. 2010, 46, 2172; https://doi.org/10.1109/tia.2010.2071270.Search in Google Scholar
[177] Krebs, F. C. Org. Electron. 2009, 10, 761; https://doi.org/10.1016/j.orgel.2009.03.009.Search in Google Scholar
[178] Jeon, S., Seo, S., Sato, Y., Delacou, C., Anisimov, A., Suenaga, K., Kauppinen, E. I., Maruyama, S., Matsuo, Y. J. Phys. Chem. C 2017, 121, 25743; https://doi.org/10.1021/acs.jpcc.7b10334.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability
- Original Papers
- Electrooxidation of 2-propanol on the mixture of nanoparticles of Pt and RuO2 supported on Ti
- Synthesis, characterization and photocatalytic application of Sophora mollis leaf extract mediated silver nanoparticles
- Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye
- Degradation of moxifloxacin by ionizing radiation and toxicity assessment
- Adsorptive removal of methylene blue (MB) and malachite green (MG) dyes from aqueous solutions using graphene oxide (GO)
- Oat extract as a natural alkaline scale inhibitor for carbon steel in seawater: electrochemical (AC and DC) studies
- Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts
- Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources
- Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol
- Biochar caged zirconium ferrite nanocomposites for the adsorptive removal of Reactive Blue 19 dye in a batch and column reactors and conditions optimizaton
- Impact of salts on the phase separation and thermodynamic properties of mixed nonionic surfactants in absence/attendance of polyvinyl alcohol
- Can optical fiber compete with profile analysis tensiometry in critical micelle concentration measurement?
- Experimental and theoretical study on the hydrogen bond interactions between ascorbic acid and glycine
- Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane
- Cobalt doping of nickel ferrites via sol gel approach: effect of doping on the structural and dielectric properties
- Determination of pseudo-refractive index in self-assembled ligand layers from spectral shift of surface plasmon resonances in colloidal silver nanoplates
Articles in the same Issue
- Frontmatter
- Review Article
- Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability
- Original Papers
- Electrooxidation of 2-propanol on the mixture of nanoparticles of Pt and RuO2 supported on Ti
- Synthesis, characterization and photocatalytic application of Sophora mollis leaf extract mediated silver nanoparticles
- Fabrication and characterization of Fe2O3, Bi2O3 and BiFeO3 and evaluation of their photo catalytic performances on degradation of methylene blue dye
- Degradation of moxifloxacin by ionizing radiation and toxicity assessment
- Adsorptive removal of methylene blue (MB) and malachite green (MG) dyes from aqueous solutions using graphene oxide (GO)
- Oat extract as a natural alkaline scale inhibitor for carbon steel in seawater: electrochemical (AC and DC) studies
- Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts
- Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources
- Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol
- Biochar caged zirconium ferrite nanocomposites for the adsorptive removal of Reactive Blue 19 dye in a batch and column reactors and conditions optimizaton
- Impact of salts on the phase separation and thermodynamic properties of mixed nonionic surfactants in absence/attendance of polyvinyl alcohol
- Can optical fiber compete with profile analysis tensiometry in critical micelle concentration measurement?
- Experimental and theoretical study on the hydrogen bond interactions between ascorbic acid and glycine
- Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane
- Cobalt doping of nickel ferrites via sol gel approach: effect of doping on the structural and dielectric properties
- Determination of pseudo-refractive index in self-assembled ligand layers from spectral shift of surface plasmon resonances in colloidal silver nanoplates