Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
-
Seyedalireza Mortazavi Tabrizi
, Afshin Javadi, Navideh Anarjan
, Seyyed Javid Mortazavi Tabrizi und Hamid Mirzaei
Abstract
Garlic oil in water nanoemulsion was resulted through subcritical water method (temperature of 120 °C and pressure of 1.5 bar, for 2 h), using aponin, as emulsifier. Based on the prepared garlic oil nanoemulsion, astaxanthin–garlic oil nanoemulsions were prepared using spontaneous microemulsification technique. Response surface methodology was employed to evaluate the effects of independent variables namely, amount of garlic oil nanoemulsion (1–9 mL) and amount of provided astaxanthin powder (1–9 g) on particle size and polydispersity index (PDI) of the resulted nanoemulsions. Results of optimization indicated that well dispersed and spherical nanodroplets were formed in the nanoemulsions with minimum particle size (76 nm) and polydispersity index (PDI, 0.358) and maximum zeta potential value (−8.01 mV), using garlic oil nanoemulsion amount of 8.27 mL and 4.15 g of astaxanthin powder. Strong antioxidant activity (>100%) of the prepared astaxanthin–garlic oil nanoemulsion, using obtained optimum amounts of the components, could be related to the highest antioxidant activity of the colloidal astaxanthin (>100%) as compared to that of the garlic oil nanoemulsion (16.4%). However, higher bactericidal activity of the resulted nanoemulsion against Escherichia coli and Staphylococcus aureus, were related to the main sulfur bioactive components of the garlic oil in which their main functional groups were detected by Fourier transform-infrared spectroscopy.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest.
References
1. Anwer, M. K., Jamil, S., Ibnouf, E. O., Shakeel, F. J. Oleo. Sci. 2014, 63, 347; https://doi.org/10.5650/jos.ess13213.Suche in Google Scholar PubMed
2. Hasssanzadeh, H., Alizade, M., Bari, M. R. IET Nanobiotechnol. 2018, 12, 647; https://doi.org/10.1049/iet-nbt.2017.0104.Suche in Google Scholar PubMed PubMed Central
3. Ragavan, G., Muralidaran, Y., Sridharan, B., Ganesh, R. N., Viswanathan, P. Food Chem. Toxicol. 2017, 105, 203; https://doi.org/10.1016/j.fct.2017.04.019.Suche in Google Scholar PubMed
4. Katata-Seru, L., Lebepe, T. C., Aremu, O. S., Bahadur, I. J. Mol. Liq. 2017, 244, 279; https://doi.org/10.1016/j.molliq.2017.09.007.Suche in Google Scholar
5. Narsaiah, K., Sharma, M., Sridhar, K., Dikkala, P. Agric. Res. 2019, 8, 356–363; https://doi.org/10.1007/s40003-018-0363-1.Suche in Google Scholar
6. Hassan, K. A., Mujtaba, M. A. Agric. Food 2019, 4, 194 https://doi.org/10.3934/agrfood.2019.1.194.Suche in Google Scholar
7. Sayyar, Z., Jafarizadeh-Malmiri, H. Z. Phys. Chem. 2019, 233, 1485–1502 https://doi.org/10.1515/zpch-2018-1152.Suche in Google Scholar
8. Sayyar, Z., Jafarizadeh-Malmiri, H. Z. Krystallog. 2019, 234, 307 https://doi.org/10.1515/zkri-2018-2096.Suche in Google Scholar
9. Sayyar, Z., Jafarizadeh-Malmiri, H. Int. J. Food Eng. 2019, 15, 1 https://doi.org/10.1515/ijfe-2018-0311.Suche in Google Scholar
10. Anarjan, N., Jafarizadeh-Malmiri, H., Nehdi, I. A., Sbihi, H. M., Al-Resayes, S. I., Tan, C. P. Int. J. Nanomed. 2015, 10, 1109 https://doi.org/10.2147/IJN.S72835.Suche in Google Scholar PubMed PubMed Central
11. Anarjan, N., Nehdi, I. A., Sbihi, M., Al-Resayes, S. I., Jafarizadeh-Malmiri, H., Tan, C. P. Molecules 2014, 19, 14257; https://doi.org/10.3390/molecules190914257.Suche in Google Scholar PubMed PubMed Central
12. Anarjan, N., Tan, C. P., Ling, C. T., Lye, K. L., Jafarizadeh-Malmiri, H., Nehdi, I. A., Cheah, Y. K., Mirhosseini, H., Baharin, B. S. J. Agric. Food Chem. 2011, 59, 8733; https://doi.org/10.1021/jf201314u.Suche in Google Scholar PubMed
13. Anarjan, N., Tan, C. P. Food Hydrocoll. 2013, 30, 437; https://doi.org/10.1016/j.foodhyd.2012.07.002.Suche in Google Scholar
14. Davinelli, S., Nielsen, M. E., Scapagnini, G. Nutrients 2018, 10, 522; https://doi.org/10.3390/nu10040522.Suche in Google Scholar PubMed PubMed Central
15. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., Garcia-Celma, M. J. Curr. Opin. Colloid Interface Sci. 2005, 10, 102; https://doi.org/10.1016/j.cocis.2005.06.004.Suche in Google Scholar
16. Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., McClements, D. J. Food Chem. 2016, 194, 410; https://doi.org/10.1016/j.foodchem.2015.07.139.Suche in Google Scholar PubMed
17. Komaiko, J. S., McClements, D. J. Compr. Rev. Food Sci. Food Saf 2016, 15, 331; https://doi.org/10.1111/1541-4337.12189.Suche in Google Scholar PubMed
18. Anarjan, N., Fahimdanesh, M., Jafarizadeh-Malmiri, H. J. Food Sci. Technol. 2017, 54, 3731; https://doi.org/10.1007/s13197-017-2764-8.Suche in Google Scholar PubMed PubMed Central
19. Mohammadlou, M., Jafarizadeh-Malmiri, H., Maghsoudi, H. Green Process. Synth. 2017, 6, 31; https://doi.org/10.1515/gps-2016-0075.Suche in Google Scholar
20. Eskandari-Nojehdehi, M., Jafarizadeh-Malmiri, H., Jafarizad, A. Z. Phys. Chem. 2018, 232, 325; https://doi.org/10.1515/zpch-2017-1001.Suche in Google Scholar
21. Ahmadi, O., Jafarizadeh-Malmiri, H., Jodeiri, N. Z. Phys. Chem. 2018, 233, 651.10.1515/zpch-2017-1089Suche in Google Scholar
22. Anarjan, N., Jaberi, N., Yeganeh‐Zare, S., Banafshehchin, E., Rahimirad, A., Jafarizadeh‐Malmiri, H. J. Am. Oil Chem. Soc. 2014, 91, 1397; https://doi.org/10.1007/s11746-014-2482-6.Suche in Google Scholar
23. Jafarizadeh-malmiri, H., Osman, A., Tan, C. P., Russly, A. R. J. Food Process. Preserv. 2012, 36, 256; https://doi.org/10.1111/j.1745-4549.2011.00583.x.Suche in Google Scholar
24. Pandey, Y. R., Kumar, S., Gupta, B. K., Ali, J., Baboota, S. Nanotechnology 2016, 27, 025202; https://doi.org/10.1088/0957-4484/27/2/025102.Suche in Google Scholar PubMed
25. Noori, S., Zeynali, F., Almasi, H. Food Contr. 2018, 84, 312; https://doi.org/10.1016/j.foodcont.2017.08.015.Suche in Google Scholar
26. Anarjan, N., Mirhosseini, H., Baharin, B. S., Tan, C. P. Food Chem. 2010, 123, 477; https://doi.org/10.1016/j.foodchem.2010.05.036.Suche in Google Scholar
27. Mori, Z., Anarjan, N. J. Food Sci. Technol. 2018, 55, 5014; https://doi.org/10.1007/s13197-018-3440-3.Suche in Google Scholar PubMed PubMed Central
28. Mesgarzadeh, I., Akbarzadeh, A. R., Rahimi, R., Maleki, A. Z. Phys. Chem. 2018, 232, 209; https://doi.org/10.1515/zpch-2017-0970.Suche in Google Scholar
29. Torabfam, M., Jafarizadeh-Malmiri, H. Green Process. Synth. 2018, 7, 530; https://doi.org/10.1515/gps-2017-0139.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures
- Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures
- Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
- In-situ stabilization of silver nanoparticles in polymer hydrogels for enhanced catalytic reduction of macro and micro pollutants
- Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater
- Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater
- ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies
- Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures
- Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures
- Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
- In-situ stabilization of silver nanoparticles in polymer hydrogels for enhanced catalytic reduction of macro and micro pollutants
- Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater
- Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater
- ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies
- Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye