Startseite Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties

  • Seyedalireza Mortazavi Tabrizi , Afshin Javadi EMAIL logo , Navideh Anarjan , Seyyed Javid Mortazavi Tabrizi und Hamid Mirzaei
Veröffentlicht/Copyright: 19. Oktober 2020

Abstract

Garlic oil in water nanoemulsion was resulted through subcritical water method (temperature of 120 °C and pressure of 1.5 bar, for 2 h), using aponin, as emulsifier. Based on the prepared garlic oil nanoemulsion, astaxanthin–garlic oil nanoemulsions were prepared using spontaneous microemulsification technique. Response surface methodology was employed to evaluate the effects of independent variables namely, amount of garlic oil nanoemulsion (1–9 mL) and amount of provided astaxanthin powder (1–9 g) on particle size and polydispersity index (PDI) of the resulted nanoemulsions. Results of optimization indicated that well dispersed and spherical nanodroplets were formed in the nanoemulsions with minimum particle size (76 nm) and polydispersity index (PDI, 0.358) and maximum zeta potential value (−8.01 mV), using garlic oil nanoemulsion amount of 8.27 mL and 4.15 g of astaxanthin powder. Strong antioxidant activity (>100%) of the prepared astaxanthin–garlic oil nanoemulsion, using obtained optimum amounts of the components, could be related to the highest antioxidant activity of the colloidal astaxanthin (>100%) as compared to that of the garlic oil nanoemulsion (16.4%). However, higher bactericidal activity of the resulted nanoemulsion against Escherichia coli and Staphylococcus aureus, were related to the main sulfur bioactive components of the garlic oil in which their main functional groups were detected by Fourier transform-infrared spectroscopy.


Corresponding author: Afshin Javadi, Department of Food Hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

1. Anwer, M. K., Jamil, S., Ibnouf, E. O., Shakeel, F. J. Oleo. Sci. 2014, 63, 347; https://doi.org/10.5650/jos.ess13213.Suche in Google Scholar PubMed

2. Hasssanzadeh, H., Alizade, M., Bari, M. R. IET Nanobiotechnol. 2018, 12, 647; https://doi.org/10.1049/iet-nbt.2017.0104.Suche in Google Scholar PubMed PubMed Central

3. Ragavan, G., Muralidaran, Y., Sridharan, B., Ganesh, R. N., Viswanathan, P. Food Chem. Toxicol. 2017, 105, 203; https://doi.org/10.1016/j.fct.2017.04.019.Suche in Google Scholar PubMed

4. Katata-Seru, L., Lebepe, T. C., Aremu, O. S., Bahadur, I. J. Mol. Liq. 2017, 244, 279; https://doi.org/10.1016/j.molliq.2017.09.007.Suche in Google Scholar

5. Narsaiah, K., Sharma, M., Sridhar, K., Dikkala, P. Agric. Res. 2019, 8, 356–363; https://doi.org/10.1007/s40003-018-0363-1.Suche in Google Scholar

6. Hassan, K. A., Mujtaba, M. A. Agric. Food 2019, 4, 194 https://doi.org/10.3934/agrfood.2019.1.194.Suche in Google Scholar

7. Sayyar, Z., Jafarizadeh-Malmiri, H. Z. Phys. Chem. 2019, 233, 1485–1502 https://doi.org/10.1515/zpch-2018-1152.Suche in Google Scholar

8. Sayyar, Z., Jafarizadeh-Malmiri, H. Z. Krystallog. 2019, 234, 307 https://doi.org/10.1515/zkri-2018-2096.Suche in Google Scholar

9. Sayyar, Z., Jafarizadeh-Malmiri, H. Int. J. Food Eng. 2019, 15, 1 https://doi.org/10.1515/ijfe-2018-0311.Suche in Google Scholar

10. Anarjan, N., Jafarizadeh-Malmiri, H., Nehdi, I. A., Sbihi, H. M., Al-Resayes, S. I., Tan, C. P. Int. J. Nanomed. 2015, 10, 1109 https://doi.org/10.2147/IJN.S72835.Suche in Google Scholar PubMed PubMed Central

11. Anarjan, N., Nehdi, I. A., Sbihi, M., Al-Resayes, S. I., Jafarizadeh-Malmiri, H., Tan, C. P. Molecules 2014, 19, 14257; https://doi.org/10.3390/molecules190914257.Suche in Google Scholar PubMed PubMed Central

12. Anarjan, N., Tan, C. P., Ling, C. T., Lye, K. L., Jafarizadeh-Malmiri, H., Nehdi, I. A., Cheah, Y. K., Mirhosseini, H., Baharin, B. S. J. Agric. Food Chem. 2011, 59, 8733; https://doi.org/10.1021/jf201314u.Suche in Google Scholar PubMed

13. Anarjan, N., Tan, C. P. Food Hydrocoll. 2013, 30, 437; https://doi.org/10.1016/j.foodhyd.2012.07.002.Suche in Google Scholar

14. Davinelli, S., Nielsen, M. E., Scapagnini, G. Nutrients 2018, 10, 522; https://doi.org/10.3390/nu10040522.Suche in Google Scholar PubMed PubMed Central

15. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., Garcia-Celma, M. J. Curr. Opin. Colloid Interface Sci. 2005, 10, 102; https://doi.org/10.1016/j.cocis.2005.06.004.Suche in Google Scholar

16. Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., McClements, D. J. Food Chem. 2016, 194, 410; https://doi.org/10.1016/j.foodchem.2015.07.139.Suche in Google Scholar PubMed

17. Komaiko, J. S., McClements, D. J. Compr. Rev. Food Sci. Food Saf 2016, 15, 331; https://doi.org/10.1111/1541-4337.12189.Suche in Google Scholar PubMed

18. Anarjan, N., Fahimdanesh, M., Jafarizadeh-Malmiri, H. J. Food Sci. Technol. 2017, 54, 3731; https://doi.org/10.1007/s13197-017-2764-8.Suche in Google Scholar PubMed PubMed Central

19. Mohammadlou, M., Jafarizadeh-Malmiri, H., Maghsoudi, H. Green Process. Synth. 2017, 6, 31; https://doi.org/10.1515/gps-2016-0075.Suche in Google Scholar

20. Eskandari-Nojehdehi, M., Jafarizadeh-Malmiri, H., Jafarizad, A. Z. Phys. Chem. 2018, 232, 325; https://doi.org/10.1515/zpch-2017-1001.Suche in Google Scholar

21. Ahmadi, O., Jafarizadeh-Malmiri, H., Jodeiri, N. Z. Phys. Chem. 2018, 233, 651.10.1515/zpch-2017-1089Suche in Google Scholar

22. Anarjan, N., Jaberi, N., Yeganeh‐Zare, S., Banafshehchin, E., Rahimirad, A., Jafarizadeh‐Malmiri, H. J. Am. Oil Chem. Soc. 2014, 91, 1397; https://doi.org/10.1007/s11746-014-2482-6.Suche in Google Scholar

23. Jafarizadeh-malmiri, H., Osman, A., Tan, C. P., Russly, A. R. J. Food Process. Preserv. 2012, 36, 256; https://doi.org/10.1111/j.1745-4549.2011.00583.x.Suche in Google Scholar

24. Pandey, Y. R., Kumar, S., Gupta, B. K., Ali, J., Baboota, S. Nanotechnology 2016, 27, 025202; https://doi.org/10.1088/0957-4484/27/2/025102.Suche in Google Scholar PubMed

25. Noori, S., Zeynali, F., Almasi, H. Food Contr. 2018, 84, 312; https://doi.org/10.1016/j.foodcont.2017.08.015.Suche in Google Scholar

26. Anarjan, N., Mirhosseini, H., Baharin, B. S., Tan, C. P. Food Chem. 2010, 123, 477; https://doi.org/10.1016/j.foodchem.2010.05.036.Suche in Google Scholar

27. Mori, Z., Anarjan, N. J. Food Sci. Technol. 2018, 55, 5014; https://doi.org/10.1007/s13197-018-3440-3.Suche in Google Scholar PubMed PubMed Central

28. Mesgarzadeh, I., Akbarzadeh, A. R., Rahimi, R., Maleki, A. Z. Phys. Chem. 2018, 232, 209; https://doi.org/10.1515/zpch-2017-0970.Suche in Google Scholar

29. Torabfam, M., Jafarizadeh-Malmiri, H. Green Process. Synth. 2018, 7, 530; https://doi.org/10.1515/gps-2017-0139.Suche in Google Scholar

Received: 2019-09-02
Accepted: 2020-09-09
Published Online: 2020-10-19
Published in Print: 2021-08-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2019-1545/html?lang=de
Button zum nach oben scrollen