Home The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
Article
Licensed
Unlicensed Requires Authentication

The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char

  • Abdul Malik , Abbas Khan EMAIL logo , Nasrullah Shah and Muhammad Sufaid Khan
Published/Copyright: July 29, 2019

Abstract

The use of indigenous natural materials and their modification toward fruitful application is one of the important subjects. Thermal modification of Rice Husk at 400 oC resulted into Rice Husk Char (RHC) which was chemically modified with KOH and was labeled as KOH Modified Rice Husk Char (KMRHC). Both RHC and KMRHC were characterized by using, Fourier transformed infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-rays (EDX) and X-ray diffraction (XRD) before and after their use as adsorbents. The prepared material was applied for the removal of toxic dyes, Direct Blue (DB) and Titan Yellow (TY) from aqueous media. The maximum adsorption capacity of DB and TY dyes on KMRHC were inspected as 30.9 mg/g and 28.6 mg/g, respectively at pH 4 using initial dye concentrations of 80 mg/L containing 2500 mg/L of the adsorbent dose with agitation speed of 240 rpm at 303 K. At the same experimental conditions the highest percentage removal of DB and TY on the adsorbent were observed as 96.6% and 89.3%, respectively. Thermodynamics studies of the adsorption of DB and TY dyes on KMRHC inferred for exothermic and spontaneous process. The value of ΔS is negative which suggested that randomness decreases at the interface of adsorbent-adsorbate during the adsorption. The kinetics study indicated that the experimental data of the adsorption process for both dyes, best fits to pseudo-second order kinetic model. The equilibrium data was tested on Langmuir, Freundlich and Temkin adsorption isotherm models. It was observed that the data are best fit to the Langmuir isotherm model (R2 > 0.99), which suggested that the adsorption process is dominated by chemisorption approach. The overall results suggest that various parameters of the adsorption process were not only affected by the variation in experimental conditions but also by the chemical structure of the adsorbate molecules for the same adsorbent.

References

1. N. Mohan, N. Balasubramanian, C. A. Basha, J. Hazard. Mater. 147 (2007) 644.10.1016/j.jhazmat.2007.01.063Search in Google Scholar

2. M. K. Sharma, R. C. Sobti, Toxicol. Environ. Mutagen. 465 (2000) 27.10.1016/S1383-5718(99)00201-6Search in Google Scholar

3. R. Malik, D. S. Ramteke, S. R. Wate, Waste Manag. 27 (2007) 1129.10.1016/j.wasman.2006.06.009Search in Google Scholar

4. A. R. Dinçer, Y. Günes, N. Karakaya, E. Günes, J. Biores. Technol. 98 (2007) 834.10.1016/j.biortech.2006.03.009Search in Google Scholar

5. D. Shen, J. Fan, W. Zhou, B. Gao, Q. Yue, Q. Kang, J. Hazard. Mater. 172 (2009) 99.10.1016/j.jhazmat.2009.06.139Search in Google Scholar

6. M. S. Chiou, P. Y. Ho, H. Y. Li, Dyes Pigm. 60 (2004) 69.10.1016/S0143-7208(03)00140-2Search in Google Scholar

7. M. E. Argun, S. Dursun, C. Ozdemir, M. Karatas, J. Hazard. Mater. 141 (2007) 77.10.1016/j.jhazmat.2006.06.095Search in Google Scholar PubMed

8. M. K. Aroua, S. P. P. Leong, L. Y. Teo, C. Y. Yin, W. M. A. W. Daud, J. Biores. Technol. 99 (2008) 5786.10.1016/j.biortech.2007.10.010Search in Google Scholar PubMed

9. C. H. Weng, Y. T. Lin, T. W. Tzeng, Bioresour. Technol. 97 (2006) 1061.10.1016/j.biortech.2005.05.001Search in Google Scholar PubMed

10. M. A. M. Salleh, D. K. Mahmoud, W. A. Karim, A. Idris, Desalin. 280 (2011) 1.10.1016/j.desal.2011.07.019Search in Google Scholar

11. L. Laasri, M. K. Elamrani, O. Cherkaoui, Environ. Sci. Pollut. Res. Int. 14 (2007) 237.10.1065/espr2006.08.331Search in Google Scholar

12. B. Noroozi, G. A. Sorial, J. Environ. Sci. 25 (2013) 419.10.1016/S1001-0742(12)60194-6Search in Google Scholar

13. A. A. Essawy, A. El-Hag Ali, M. S. A. Abdel-Mottaleb, J. Hazard. Mater. 157 (2008) 547.10.1016/j.jhazmat.2008.01.072Search in Google Scholar

14. D. Ayhan, J. Hazard. Mater. 67 (2009) 1.Search in Google Scholar

15. M. Hema, S. Arivoli, Int. J. Phys. Sci. 2 (2007) 10.Search in Google Scholar

16. A. Jumasiah, T. G. Chuah, J. Gimbon, T. S. Y. Choong, I. Azni, Desalin. 186 (2005) 57.10.1016/j.desal.2005.05.015Search in Google Scholar

17. Q. Sun, L. Yang, Water Res. 37 (2003) 1535.10.1016/S0043-1354(02)00520-1Search in Google Scholar

18. M. N. V. Ravi Kumar, T. R. Sridhari, K. D. Bhavani, P. K. Dutta, Colorage. 40 (1998) 25.Search in Google Scholar

19. D. Pokhrel, T. Viraraghavan, Sci. Total Environ. 333 (2004) 37.10.1016/j.scitotenv.2004.05.017Search in Google Scholar

20. L. Laasri, M. K. Elamrani, O. Cherkaoui, Environ. Sci. Pollut. Res. Int. 14 (2007) 237.10.1065/espr2006.08.331Search in Google Scholar

21. W. Delée, C. O’Neill, F. R. Hawkes, H. M. Pinheiro, J. Chem. Technol. Biotechnol. 73 (1998) 323.10.1002/(SICI)1097-4660(199812)73:4<323::AID-JCTB976>3.0.CO;2-SSearch in Google Scholar

22. S. M. Ghoreishi, R. Haghighi, Chem. Eng. J. 95 (2003) 163.10.1016/S1385-8947(03)00100-1Search in Google Scholar

23. M. F. R. Pereira, S. F. Soares, J. J. M. Órfão, J. L. Figueiredo, Carbon 41 (2003) 811.10.1016/S0008-6223(02)00406-2Search in Google Scholar

24. B. Noroozi, G. A. Sorial, J. Environ. Sci. 25 (2013) 419.10.1016/S1001-0742(12)60194-6Search in Google Scholar

25. S. Ibrahim, W. Z. Shuy, H. M. Ang, S. Wang, J. Chem. Eng. 5 (2010) 563.10.1002/apj.446Search in Google Scholar

26. B. C. Oei, S. Ibrahim, S. Wang, H. M. Ang, Biores. Technol. 100 (2009) 4292.10.1016/j.biortech.2009.03.063Search in Google Scholar

27. M. El-Halwany, Desalination 250 (2010) 208.10.1016/j.desal.2008.07.030Search in Google Scholar

28. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77 (2001), 247.10.1016/S0960-8524(00)00080-8Search in Google Scholar

29. S. Hang, H. Qinrong, S. Ping, S. She, X. Kongliang, L. Jiayi, L. Song, L. Zhenning, J. Colloid. Interfac. Sci. 505 (2017) 884.10.1016/j.jcis.2017.06.072Search in Google Scholar

30. C. Richard, J. Simmchen, A. Eychmüller, Z. Phys. Chem. 232 (2018) 747.10.1515/zpch-2017-1087Search in Google Scholar

31. J. Khan, M. Sayed, F. Ali, H. M. Khan, Z. Phys. Chem. 232 (2018) 507.10.1515/zpch-2017-1072Search in Google Scholar

32. A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Z. Phys. Chem. 232 (2017) 61.10.1515/zpch-2017-0005Search in Google Scholar

33. M. Saeed, M. Siddique, M. Usman, Atta-ul-Haq, S. G. Khan, H. A. Raoof, Z. Phys. Chem. 231 (2017) 1559.10.1515/zpch-2016-0921Search in Google Scholar

34. P. Nigam, G. Armour, I. M. Banat, D. Singh, R. Marchant, Bioresour. Technol. 72 (2000) 219.10.1016/S0960-8524(99)00123-6Search in Google Scholar

35. A. Malik, A. Khan, M. Humayun, Z. Phys. Chem. 233 (2019) 375.10.1515/zpch-2018-1190Search in Google Scholar

36. R. M. Kulkarni, G. Srinikethan, K. V. Shetty, Prosp. Biosci. 2 (2012), 415.10.1007/978-81-322-0810-5_50Search in Google Scholar

37. S. F. Nomanbhay, K. Palanisamy, Electron. J. Biotechnol. 8 (2005) 44.10.2225/vol8-issue1-fulltext-7Search in Google Scholar

38. Y. M. Ren, X. Z. Wei, M. L. Zhang, J. Hazard. Mater. 158 (2008) 14.10.1016/j.jhazmat.2008.01.044Search in Google Scholar PubMed

39. R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Bioresour. Technol. 99 (2008) 2938.10.1016/j.biortech.2007.06.027Search in Google Scholar PubMed

40. K. A. Adegoke, O. S. Water Resour. Indust. 12 (2015) 8.10.1016/j.wri.2015.09.002Search in Google Scholar

41. S. Nethaji, A. Sivasamy, G. Thennarasu, S. Saravanan, J. Hazard. Mater. 181 (2010) 271.10.1016/j.jhazmat.2010.05.008Search in Google Scholar PubMed

42. O. Moradi, K. Zare, M. Monajjemi, M. Yari, H. Aghaie, Fuller. Nanotub. Car. N.18 (2010) 285.10.1080/15363831003783005Search in Google Scholar

43. A. Sari, M. Tuzen, J. Hazard. Mater. 164 (2009) 1004.10.1016/j.jhazmat.2008.09.002Search in Google Scholar PubMed

44. O. Abdelwaha, N. K. Amin, E. S. Z. Ashtoukhy, Chem. Eng. Res. Des. 91 (2013) 165.10.1016/j.cherd.2012.07.005Search in Google Scholar

45. R. D. Zhang, J. H. Zhang, X. N. Zhang, C. C. Dou, R. P. Han, J. Taiwan Inst. Chem. Eng. 45 (2014) 2578.10.1016/j.jtice.2014.06.009Search in Google Scholar

46. K. Suantak, B. Chandrajit, C. Shri, Res. J. Chem. Sci. 1 (2011) 73.Search in Google Scholar

47. A. W. Adamson, A. P. Gast, Wiley-Intersci. New York (1997).Search in Google Scholar

48. A. Gurusamy, J. Ruey-Shin, L. Duu-Jong, J. Hazard. Mater. B. 92 (2002) 263.10.1016/S0304-3894(02)00017-1Search in Google Scholar

49. H. K. Boparai, J. Meera, M. O. Dennis, J. Harzard. Mater. 186 (2011) 458.10.1016/j.jhazmat.2010.11.029Search in Google Scholar PubMed

50. L.-G. Wang, G.-B. Yan, Desalin. 274 (2011) 81.10.1016/j.desal.2011.01.082Search in Google Scholar

51. P. SenthilKumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Desalin. 261 (2010) 52.10.1016/j.desal.2010.05.032Search in Google Scholar

52. A. Behnamfard, M. M. Salarirad, J. Hazard. Mater. 170 (2009) 127.10.1016/j.jhazmat.2009.04.124Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2019-1448).


Received: 2019-04-23
Accepted: 2019-07-10
Published Online: 2019-07-29
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2019-1448/html
Scroll to top button