Decomposition Kinetics of Levofloxacin: Drug-Excipient Interaction
-
Jan Nisar
, Mudassir Iqbal
, Munawar Iqbal , Afzal Shah , Mohammad Salim Akhter , Sirajuddin , Rafaqat Ali Khan , Israr Uddin , Luqman Ali Shah and Muhammad Sufaid Khan
Abstract
The present study is focused on the thermal decomposition of Levofloxacin in the absence and presence of different excipients (sodium starch glycolate, magnesium stearate, microcrystalline cellulose and lactose using Thermogravimetry (TG). Fourier Transform Infra Red Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) were used to study the possible drug – excipient interaction. It has been shown that the interaction of the first three excipients (sodium starch glycolate, magnesium stearate, and microcrystalline cellulose) with Levofloxacin is physical in nature. Lactose was shown to decrease the degradation temperature to a maximum extent. This indicates a strong chemical interaction between the drug and lactose. The activation energies in the former case were found almost similar but deviated considerably in the latter case.
References
1. C. Fogarty, R. Goldschmidt, K. Bush, Clin. Infect. Dis. 31 (2000) 613.10.1086/313976Search in Google Scholar PubMed
2. R. N. Greenberg, M. T. Newman, S. Shariaty, R. W. Pectol, Antimicrob. Agents Chemother. 44 (2000) 164.10.1128/AAC.44.1.164-166.2000Search in Google Scholar PubMed PubMed Central
3. C. Urban, N. Rahman, X. Zhao, N. Mariano, S. Segal-Maurer, K. Drlica, J. J. Rahal, J. Infect. Dis. 184 (2001) 794.10.1086/323086Search in Google Scholar PubMed
4. V. K. Shahwal, B. K. Dubey, M. Bhoumick, Int. J. Adv. Pharm. 1 (2012) 1.Search in Google Scholar
5. M. A. Collado-Sánchez, M. Rambla-Alegre, S. Carda-Broch, Esteve-Romero Josep, J. Liq. Chromatogr. Relat. Technol. 33 (2010) 513.10.1080/10826070903574519Search in Google Scholar
6. L. Pérez-Ibarbia, T. Majdanski, S. Schubert, N. Windhab, U. S. Schubert, Eur. J. Pharm. Sci. 93 (2016) 264.10.1016/j.ejps.2016.08.026Search in Google Scholar PubMed
7. T. B. Ernest, D. P. Elder, L. G. Martini, M. Roberts, J. Pharm. Pharmacol. 59 (2007) 1043.10.1211/jpp.59.8.0001Search in Google Scholar PubMed
8. M. J. Peres-Filho, M. P. N. Gaeti, S. R. Oliveira, R. N. Marreto, E. M. Lima, J. Therm. Anal. Calorim. 104 (2011) 255.10.1007/s10973-010-1245-3Search in Google Scholar
9. H. K. Stulzer, P. O. Rodrigues, T. M. Cardoso, J. S. R. Matos, M. A. S. Silva, J. Therm. Anal. Calorim. 91 (2008) 323.10.1007/s10973-006-7935-1Search in Google Scholar
10. K. P. Fu, S. C. Lafredo, B. Foleno, D. M. Isaacson, J. F. Barrett, A. J. Tobia, M. E. Rosenthale, Antimicrob. Agents Chemother. 36 (1992) 860.10.1128/AAC.36.4.860Search in Google Scholar PubMed PubMed Central
11. M. A. Saleem, M. F. Nazar, B. Yameen, A. M. Khan, S. Z. Hussain, M. R. Khalid, Chemistry Select 3 (2018) 11616.10.1002/slct.201801925Search in Google Scholar
12. S. R. Baratam, J. Vijayaratna, Asian J. Pharm. Clin. Res. 11 (2018) 148.10.22159/ajpcr.2018.v11i6.20296Search in Google Scholar
13. D. Asha, S. Jeganath, U. V. N. V. Arjun, S. Sathesh Kumar, Res. J. Pharm. Technol. 11 (2018) 1467.10.5958/0974-360X.2018.00273.1Search in Google Scholar
14. V. D. Chavada, N. M. Bhatt, M. Sanyal, P. S. Shrivastav, Turk. J. Chem. 42 (2018) 36.10.3906/kim-1703-79Search in Google Scholar
15. T. D. Nguyen, H. B. Le, T. O. Dong, T. D. Pham, J. Anal. Methods Chem. 2018 (2018) Article ID 8436948, 11.10.1155/2018/9462019Search in Google Scholar PubMed PubMed Central
16. V. B. K. Mullapudi, K. Dheram, J. Food Drug Anal. 26 (2018) 385.10.1016/j.jfda.2016.09.001Search in Google Scholar PubMed
17. Y. Chen, J. Wang, J. Liu, L. Lu, Z. Phys. Chem. 232 (2018) 1733.10.1515/zpch-2018-1145Search in Google Scholar
18. D. Kaushal, D. S. Rana, M. Kumar, K. Singh, K. Singh, S. Chauhan, A. Umar, Z. Phys. Chem. 233 (2018) 413.10.1515/zpch-2017-1014Search in Google Scholar
19. M. Imran, Z. Phys. Chem. 233 (2018) 273.10.1515/zpch-2017-1066Search in Google Scholar
20. K. Roy, S. Saha, B. Datta, L. Sarkar, M. N. Roy, Z. Phys. Chem. 232 (2018) 281.10.1515/zpch-2017-0003Search in Google Scholar
21. M. N. Roy, S. Barman, S. Saha, Z. Phys. Chem. 231 (2017) 1111.10.1515/zpch-2016-0804Search in Google Scholar
22. E. A. Khramtsova, A. A. Ageeva, A. A. Stepanov, V. F. Plyusnin, T.V. Leshina, Z. Phys. Chem. 231 (2017) 609.10.1515/zpch-2016-0842Search in Google Scholar
23. Y. Hu, J. Li, C.-W. Lv, D. Qu, Z. Hou, M. Jia, J.-T. Li, Z.-D. Zhang, X.-X. Luo, Z. Yuan, M.-K. Li, Z. Phys. Chem. 230 (2016) 97.10.1515/zpch-2015-0630Search in Google Scholar
24. S. M. El-Megharbel, M. A. Hussien, M. S. Refat, J. Comput. Theor. Nanosci. 14 (2017) 561.10.1166/jctn.2017.6363Search in Google Scholar
25. S. A. Sadeek, W. H. El-Shwiniy, J. Iran. Chem. Soc. 14 (2017) 1711.10.1007/s13738-017-1112-2Search in Google Scholar
26. W. Jost, Z. Phys. Chem. 26 (2011) 143.10.1524/zpch.1960.26.1_2.143Search in Google Scholar
27. H. Zachmann, Z. Phys. Chem. 80 (2011) 106.10.1524/zpch.1972.80.1_2.106Search in Google Scholar
28. G. Schwab, Z. Phys. Chem. 59 (2011) 341.10.1524/zpch.1968.59.5_6.341Search in Google Scholar
29. J. Sommerer, M. Olzmann, Z. Phys. Chem. 229 (2014) 495.10.1515/zpch-2014-0618Search in Google Scholar
30. K. G. Andrew, E. B. Michael, Thermochim. Acta 386 (2002) 91.10.1016/S0040-6031(01)00769-9Search in Google Scholar
31. Y. Cheng, Y. Haung, K. Alexander, D. Dollimore, Thermochim. Acta 367–368 (2001) 23.10.1016/S0040-6031(00)00689-4Search in Google Scholar
32. F. Rodante, G. Catalani, M. Tomassetti, J. Therm. Anal. Calorim. 66 (2001) 155.10.1023/A:1012495817109Search in Google Scholar
33. A. A. Araújo, S. Storpirtis, L. P. Mercuri, F. M. Carvalho, M. Santos-Filho, J. R. Matose, Int. J. Pharm. 260 (2003) 303.10.1016/S0378-5173(03)00288-6Search in Google Scholar PubMed
34. J. A. F. F. Rocco, J. E. S. Lima, A. G. Frutuoso, K. Iha, M. Ionashiro, J. R. Matos, M. E. V. Suárez-Iha, J. Therm. Anal. Calorim. 75 (2004) 551.10.1023/B:JTAN.0000027145.14854.f0Search in Google Scholar
35. F. S. Felix, L. C. S. Cides, L. Angenes, J. R. Matos, J. Therm. Anal. Calorim. 95 (2009) 877.10.1007/s10973-007-8188-3Search in Google Scholar
36. L. Burnham, D. Dollimore, K. Alexander, Thermochim. Acta 357–358 (2000) 15.10.1016/S0040-6031(00)00359-2Search in Google Scholar
37. P. Paik, K. K. Kar, Polym. Degrad. Stabil. 93 (2008) 24.10.1016/j.polymdegradstab.2007.11.001Search in Google Scholar
38. W. Tang, X. G. Li, D. Yan, J. Appl. Polym. Sci. 91 (2004) 445.10.1002/app.13103Search in Google Scholar
39. F. Rodante, G. Catalani, S. Vecchio, J. Therm. Anal. Calorim. 68 (2002) 689.10.1023/A:1016024810586Search in Google Scholar
40. L. C. S. Cides, A. A. S. Araujo, M. Santos-Filho, J. R. Matos, J. Therm. Anal. Calorim. 84 (2006) 441.10.1007/s10973-005-7131-8Search in Google Scholar
41. T. Ozawa, Thermochim. Acta. 355 (2000) 35.10.1016/S0040-6031(00)00435-4Search in Google Scholar
42. F. Ghaderi, M. Nemati, M. R. Siahi-Shadbad, H. Valizadeh, F. Monajjemzadeh, J. Therm. Anal. Calorim. 123 (2016) 2081.10.1007/s10973-015-4995-0Search in Google Scholar
43. S. A. El-Zahaby, A. A. Kassem, A. H. El-Kamel, Saudi Pharm. J. 22 (2014) 570.10.1016/j.jsps.2014.02.009Search in Google Scholar PubMed PubMed Central
44. N. Doodipala, C. R. Palm, S. Reddy, Y. M. Rao, Int. J. Pharm. Sci. Nanotechnol. 4 (2011) 1463.10.37285/ijpsn.2011.4.3.4Search in Google Scholar
45. P. N. Pereira, C. Fandaruff, M. K. Riekes, G. A. Monti, C. E. M. Campos, S. L. Cuffini, M. A. S. Silva, J. Therm. Anal. Calorim. 119 (2015) 989.10.1007/s10973-014-4233-1Search in Google Scholar
46. E. M. Gorman, B. Samas, E. J. Munson, J. Pharm. Sci. 101 (2012) 3319.10.1002/jps.23200Search in Google Scholar PubMed
47. S. A. El-Zahaby, A. A. Kassem, A. H. El-Kamel, Int. J. Pharm. 464 (2014) 10.10.1016/j.ijpharm.2014.01.024Search in Google Scholar PubMed
48. H. Kitaoka, C. Wada, R. Moroi, H. Hakusui, Chem. Pharm. Bull. 43 (1995) 649.10.1248/cpb.43.649Search in Google Scholar
49. F. Ghaderi, M. Nemati, M. R. Siahi-Shadbad, H. Valizadeh, F. Monajjemzadeh, Powder Technol. 286 (2015) 845.10.1016/j.powtec.2015.09.007Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Maximum of Minimal Conductivity in Aqueous Electrolytes
- The Effect of Low Weight Percent Multiwalled Carbon Nanotubes on the Dielectric Properties of Non-Conducting Polymer/Ceramic Nanocomposites for Energy Storage Materials
- Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor
- Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies
- New Heterocyclic Derivative to Stop Carbon Steel Corrosion
- Investigating of Erosion-Corrosion Behavior of Carbon Steel in Egyptian Crude Oil-Water Mixture Using Electrochemical Method
- Structural, Vibrational and UV/Vis Studies of Adamantane-Containing Triazole Thiones by Spectral, DFT and Multi-reference ab initio Methods
- The Effect of Grain Size and Shape on Sliding Friction of Wet Granular Media
- Decomposition Kinetics of Levofloxacin: Drug-Excipient Interaction
- ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye
- An Efficient Ultrasonic-Assisted Synthesis and Nonlinear Optical Property of Donor (D) -π-Acceptor (A) Chalcone (DDFP)
- Synthesized and Photocatalytic Mechanism of the NiO Supported YMnO3 Nanoparticles for Photocatalytic Degradation of the Methyl Orange Dye
Articles in the same Issue
- Frontmatter
- The Maximum of Minimal Conductivity in Aqueous Electrolytes
- The Effect of Low Weight Percent Multiwalled Carbon Nanotubes on the Dielectric Properties of Non-Conducting Polymer/Ceramic Nanocomposites for Energy Storage Materials
- Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor
- Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies
- New Heterocyclic Derivative to Stop Carbon Steel Corrosion
- Investigating of Erosion-Corrosion Behavior of Carbon Steel in Egyptian Crude Oil-Water Mixture Using Electrochemical Method
- Structural, Vibrational and UV/Vis Studies of Adamantane-Containing Triazole Thiones by Spectral, DFT and Multi-reference ab initio Methods
- The Effect of Grain Size and Shape on Sliding Friction of Wet Granular Media
- Decomposition Kinetics of Levofloxacin: Drug-Excipient Interaction
- ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye
- An Efficient Ultrasonic-Assisted Synthesis and Nonlinear Optical Property of Donor (D) -π-Acceptor (A) Chalcone (DDFP)
- Synthesized and Photocatalytic Mechanism of the NiO Supported YMnO3 Nanoparticles for Photocatalytic Degradation of the Methyl Orange Dye