Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor
-
Hizb Ullah Khan
, Muhammad Tariq Jan , Mahmood Iqbal , Mutabar Shah , Inam Ullah , Jehangeer Khan , Kalsoom Mahmood , Abdul Niaz and Muhammad Tariq
Abstract
In the present study, we have synthesized conducting polymer nanocomposites consist of silver nanoparticles (AgNPs), graphene, and polyvinyl acetate (PVAc) emulsion. The synthesized nanocomposite was characterized by UV/Vis, FT-IR, XRD, TGA, and SEM techniques. SEM images showed that AgNPs and graphene sheets are well dispersed in the PVAc matrix. The electrical conductivities of the nanocomposites were examined using the impedance analyzer instrument. It was ascertained that polymer composite containing silver nanoparticles and graphene exhibit higher conductivities. The PVAc-AgNPs/Graphene nanocomposite was also used as potential conducting materials for humidity measurement.
Acknowledgment
The authors strongly acknowledge Pakistan council of scientific and industrial research laboratories complex Peshawar for providing all the facilities for the present research work.
Conflict of Interest: The authors have no conflict of interest.
References
1. R. M. Ahmed, Int. J. Mod. Phys. B 26 (2012) 1250159.10.1142/S0217979212501597Search in Google Scholar
2. Z. H. Mbhele, M. G. Salemane, C. G. C. E. Van Sittert, J. M. Nedeljković, V. Djoković, A. S. Luyt, Chem. Mater. 15 (2003) 5019.10.1021/cm034505aSearch in Google Scholar
3. N. Hoogesteijn Von Reitzenstein, X. Bi, Y. Yang, K. Hristovski, P. Westerhoff, J. Appl. Polym. Sci. 133 (2016) 43811.10.1002/app.43811Search in Google Scholar
4. M. Miculescu, V. K. Thakur, F. Miculescu, S. I. Voicu, Polym. Adv. Technol. 27 (2016) 844.10.1002/pat.3751Search in Google Scholar
5. L. Wang, H. Zhang, C. Wang, T. Ma, ACS Sustain. Chem. Eng. 1 (2013) 205.10.1021/sc300153bSearch in Google Scholar
6. Atta-Ul-Haq, M. Saeed, M. A. Jamal, N. Akram, T. H. Bokhari, U. Afaq, Z. Phys. Chem. 233 (2019) 1047.10.1515/zpch-2018-1226Search in Google Scholar
7. I. Mesgarzadeh, A. Reza Akbarzadeh, R. Rahimi, A. Maleki, Z. Phys. Chem. 232 (2018) 209.10.1515/zpch-2017-0970Search in Google Scholar
8. T. Kodanek, A. Freytag, A. Schlosser, S. Naskar, T. Härtling, D. Dorfs, N. C. Bigall, Z. Phys. Chem. 232 (2018) 1675.10.1515/zpch-2017-1045Search in Google Scholar
9. H. Zhu, M. L. Du, M. Zhang, P. Wang, S. Y. Bao, L. N. Wang, Y. Q. Fu, J. M. Yao, Biosens. Bioelectron. 49 (2013) 210.10.1016/j.bios.2013.04.016Search in Google Scholar PubMed
10. B. M. Abu-Zied, A. M. Asiri, Thermochim. Acta 581 (2014) 110.10.1016/j.tca.2014.02.020Search in Google Scholar
11. H. H. Lee, K. Sen Chou, Z. W. Shih, Int. J. Adhes. Adhes. 25 (2005) 437.10.1016/j.ijadhadh.2004.11.008Search in Google Scholar
12. M. M. Farid, L. Goudini, F. Piri, A. Zamani, F. Saadati, Food Chem. 194 (2016) 61.10.1016/j.foodchem.2015.07.128Search in Google Scholar PubMed
13. S. C. Tjong, Express Polym. Lett. 6 (2012) 437.10.3144/expresspolymlett.2012.46Search in Google Scholar
14. Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E. S.-W. Kong, Y. Zhang, Nano-Micro Lett. 4 (2012) 1.10.1007/BF03353684Search in Google Scholar
15. Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, K. P. Loh, Adv. Funct. Mater. 20 (2010) 782.10.1002/adfm.200901658Search in Google Scholar
16. V. B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 193 (2015) 49.10.1016/j.mseb.2014.11.002Search in Google Scholar
17. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, Prog. Polym. Sci. 35 (2010) 1350.10.1016/j.progpolymsci.2010.07.005Search in Google Scholar
18. W. Chee, H. Lim, N. Huang, I. Harrison, RSC Adv. 5 (2015) 68014.10.1039/C5RA07989FSearch in Google Scholar
19. U. Khan, P. May, H. Porwal, K. Nawaz, J. N. Coleman, ACS Appl. Mater. Interfaces 5 (2013) 1423.10.1021/am302864fSearch in Google Scholar PubMed
20. J. Hu, X. Jia, C. Li, Z. Ma, G. Zhang, W. Sheng, X. Zhang, Z. Wei, J. Mater. Sci. 49 (2014) 2943.10.1007/s10853-013-8006-1Search in Google Scholar
21. K. Balasubramanian, M. Burghard, Small 1 (2005) 180.10.1002/smll.200400118Search in Google Scholar PubMed
22. S. Jagtap, S. Rane, S. Arbuj, S. Rane, S. Gosavi, Microelectron. Eng. 187–188 (2018) 1.10.1016/j.mee.2017.11.009Search in Google Scholar
23. K. Malook, H. Khan, M. Shah, I.-U. Haque, Polym. Compos. 35 (2018) 12.10.1007/s11814-017-0263-2Search in Google Scholar
24. H. Khan, K. Malook, M. Shah, J. Mater. Sci. Mater. Electron. 29 (2018) 9090.10.1007/s10854-018-8936-0Search in Google Scholar
25. H. Yang, Q. Ye, R. Zeng, J. Zhang, L. Yue, M. Xu, Z. J. Qiu, D. Wu, Sensors (Switzerland) 17 (2017) 2415.10.3390/s17102415Search in Google Scholar PubMed PubMed Central
26. H. K. Chitte, N. V. Bhat, N. S. Karmakar, D. C. Kothari, G. N. Shinde, World J. Nano Sci. Eng. 02 (2012) 19.10.4236/wjnse.2012.21004Search in Google Scholar
27. B. M. L. Garay Ramirez, C. Glorieux, E. S. Martin Martinez, J. J. A. Flores Cuautle, Appl. Therm. Eng. 61 (2013) 838.10.1016/j.applthermaleng.2013.09.049Search in Google Scholar
28. N. H. Vo, T. D. Dao, H. M. Jeong, Macromol. Chem. Phys. 216 (2015) 770.10.1002/macp.201400560Search in Google Scholar
29. S. N. Tripathi, P. Saini, D. Gupta, V. Choudhary, J. Mater. Sci. 48 (2013) 6223.10.1007/s10853-013-7420-8Search in Google Scholar
30. U. H. Hossain, T. Seidl, W. Ensinger, Polym. Chem. 5 (2014) 1001.10.1039/C3PY01062GSearch in Google Scholar
31. M. Casa, M. Sarno, C. Cirillo, P. Ciambelli, Chem. Eng. Trans. 47 (2016) 307.Search in Google Scholar
32. Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, F. Faupel, J. Nanosci. Nanotechnol. 10 (2010) 2833.10.1166/jnn.2010.1449Search in Google Scholar PubMed
33. Z. Tang, L. Zhang, C. Zeng, T. Lin, B. Guo, Soft Matter 8 (2012) 9214.10.1039/c2sm26307fSearch in Google Scholar
34. E. T. Mombeshora, R. Simoyi, V. O. Nyamori, P. G. Ndungu, South African J. Chem. 68 (2015) 153.10.17159/0379-4350/2015/v68a22Search in Google Scholar
35. J. Ding, W. Yan, W. Xie, S. Sun, J. Bao, C. Gao, Nanoscale 6 (2014) 2299.10.1039/c3nr05984gSearch in Google Scholar PubMed
36. L.-T. Cai, S.-B. Yao, S.-M. Zhou, J. Electroanal. Chem. 421 (1997) 45.10.1016/S0022-0728(96)04836-XSearch in Google Scholar
37. P. Bala, B. K. Samantaray, S. K. Srivastava, G. B. Nando, J. Appl. Polym. Sci. 92 (2004) 3583.10.1002/app.20401Search in Google Scholar
38. Y. J. Hyun, P. J. Hyeung, C. J. Young, Polymer/Montmorillonite/Silver Prepared by In-Situ Polymerization and Electrospraying Technique, in Intech, (2006), P. 165.Search in Google Scholar
39. S. Gopalakrishnan, R. Sujatha, Der Chim. Sin. 2 (2011) 103.Search in Google Scholar
40. P. S. Abthagir, R. Saraswathi, S. Sivakolunthu, Thermochim. Acta 411 (2004) 109.10.1016/j.tca.2003.08.010Search in Google Scholar
41. Ö. Eraldemir, B. Sari, A. Gök, H. I. Ünal, J. Macromol. Sci. Part A Pure Appl. Chem. 45 (2008) 205.10.1080/10601320701839890Search in Google Scholar
42. Z. Tang, N. A. Kotov, S. Magonov, B. Ozturk, Nat. Mater. 2 (2003) 413.10.1038/nmat906Search in Google Scholar PubMed
43. P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Science. 318 (2007) 80.10.1126/science.1143176Search in Google Scholar PubMed
44. L. J. Bonderer, A. R. Studart, L. J. Gauckler, Science. 319 (2008) 1069.10.1126/science.1148726Search in Google Scholar PubMed
45. S. Fares, Nat. Sci. 03 (2011) 1034.10.4236/ns.2011.312129Search in Google Scholar
46. C. J. Huang, F. S. Shieu, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 42 (2003) 5336.10.1143/JJAP.42.5336Search in Google Scholar
47. S. M. Reda, S. M. Al-Ghannam, Adv. Mater. Phys. Chem. 02 (2012) 75.10.4236/ampc.2012.22013Search in Google Scholar
48. J. M. Montes, F. G. Cuevas, J. Cintas, Appl. Phys. A Mater. Sci. Process. 92 (2008) 375.10.1007/s00339-008-4534-ySearch in Google Scholar
49. B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau, J. Appl. Phys. 92 (2002) 4024.10.1063/1.1506397Search in Google Scholar
50. J. C. Dyre, T. B. Schroøder, Rev. Mod. Phys. 72 (2000) 873.10.1103/RevModPhys.72.873Search in Google Scholar
51. M. Zambrzycki, A. Fraczek-Szczypta, J. Mater. Sci. 53 (2018) 7403.10.1007/s10853-018-2062-5Search in Google Scholar
52. K. S. Shamala, L. C. S. Murthy, M. C. Radhakrishna, K. N. Rao, Sensors Actuators, A Phys. 135 (2007) 552.10.1016/j.sna.2006.10.004Search in Google Scholar
53. Z. Ahmad, M. H. Sayyad, M. Saleem, K. S. Karimov, M. Shah, Phys. E Low-Dimensional Syst. Nanostructures 41 (2008) 18.10.1016/j.physe.2008.05.018Search in Google Scholar
54. E. M. Amin, N. Karmakar, B. Winther-Jensen, Prog. Electromagn. Res. B 54 (2013) 149.10.2528/PIERB13061716Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1302).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Maximum of Minimal Conductivity in Aqueous Electrolytes
- The Effect of Low Weight Percent Multiwalled Carbon Nanotubes on the Dielectric Properties of Non-Conducting Polymer/Ceramic Nanocomposites for Energy Storage Materials
- Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor
- Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies
- New Heterocyclic Derivative to Stop Carbon Steel Corrosion
- Investigating of Erosion-Corrosion Behavior of Carbon Steel in Egyptian Crude Oil-Water Mixture Using Electrochemical Method
- Structural, Vibrational and UV/Vis Studies of Adamantane-Containing Triazole Thiones by Spectral, DFT and Multi-reference ab initio Methods
- The Effect of Grain Size and Shape on Sliding Friction of Wet Granular Media
- Decomposition Kinetics of Levofloxacin: Drug-Excipient Interaction
- ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye
- An Efficient Ultrasonic-Assisted Synthesis and Nonlinear Optical Property of Donor (D) -π-Acceptor (A) Chalcone (DDFP)
- Synthesized and Photocatalytic Mechanism of the NiO Supported YMnO3 Nanoparticles for Photocatalytic Degradation of the Methyl Orange Dye
Articles in the same Issue
- Frontmatter
- The Maximum of Minimal Conductivity in Aqueous Electrolytes
- The Effect of Low Weight Percent Multiwalled Carbon Nanotubes on the Dielectric Properties of Non-Conducting Polymer/Ceramic Nanocomposites for Energy Storage Materials
- Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor
- Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies
- New Heterocyclic Derivative to Stop Carbon Steel Corrosion
- Investigating of Erosion-Corrosion Behavior of Carbon Steel in Egyptian Crude Oil-Water Mixture Using Electrochemical Method
- Structural, Vibrational and UV/Vis Studies of Adamantane-Containing Triazole Thiones by Spectral, DFT and Multi-reference ab initio Methods
- The Effect of Grain Size and Shape on Sliding Friction of Wet Granular Media
- Decomposition Kinetics of Levofloxacin: Drug-Excipient Interaction
- ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye
- An Efficient Ultrasonic-Assisted Synthesis and Nonlinear Optical Property of Donor (D) -π-Acceptor (A) Chalcone (DDFP)
- Synthesized and Photocatalytic Mechanism of the NiO Supported YMnO3 Nanoparticles for Photocatalytic Degradation of the Methyl Orange Dye