Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies
Abstract
In the current effort, the Co–Ni–Cr Nanocomposites were synthesized by chemical method and characterized by means of scanning electron micrographs (SEM), X-ray diffraction (XRD), Fourier trans from infra-red (FTIR), and vibration sample magnetization (VSM). In the final step, these nanoparticles were used to study the nitrate removal efficiency from aqueous solution. The effect of important factor including pH, concentration of Nitrate (NO3−) ion, contact time and nanoparticle dose were studied in order to find the optimum adsorption conditions. A maximum of removal of the nitrate was observed at pH 4, initial concentration of 40 mg L−1, amount of nanoparticle of 0.06 g L−1 and contact time 60 min. The adsorption isotherm values were obtained and analyzed using the Langmuir, Frenudlich, Temkin and Dubinin–Radushkevich equations, the Temkin isotherm being the one that showed the best correlation coefficient (R2 = 0.999). In addition to, the adsorption kinetics studied by the pseudo-first-order, pseudo-second-order, Elovich model, Ritchie and intraparticle diffusion models. The experimental data fitted to pseudo-second-order (R2 = 0.999).
Acknowledgments
S. Rahdar, S. Ahmadi, and Z. Mehdizadeh are grateful to the Zabol University of Medical Sciences for the financial support of this study (Project No. 1396.324). A. Rahdar would like to thank the University of Zabol for financial support (UOZ-GR-9618-40) for this work.
References
1. S. Tyagi, D. Rawtani, N. Khatri, M. Tharmavaram, J. Water Process. Eng. 21 (2018) 84.10.1016/j.jwpe.2017.12.005Search in Google Scholar
2. A. Bhatnagar, E. Kumar, M. Sillanpää, Chem. Eng. 163 (2010) 317.10.1016/j.cej.2010.08.008Search in Google Scholar
3. M. Francavilla, L. Beneduce, G. Gatta, E. Montoneri, M. Monteleone, D. Mainero, Biochem. Eng. 116 (2016) 75.10.1016/j.bej.2016.02.015Search in Google Scholar
4. C. Vereda-Alonso, J. M. Rodríguez-Maroto, R. A. Garcıa-Delgado, C. Gómez-Lahoz, F. Garcıa-Herruzo, International Conference on Education and New Learning Technologies, Barcelona, Spain (2009), P. 6.Search in Google Scholar
5. T. Shubair, O. Eljamal, A. M. Khalil, N. Matsunaga, Sep. Purif. Technol. 193 (2018) 242.10.1016/j.seppur.2017.10.069Search in Google Scholar
6. H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao, M. Shu, Appl. Sci. Res. 284 (2013) 942.10.1016/j.apsusc.2013.04.013Search in Google Scholar
7. P. Ganesan, R. Kamaraj, S. Vasudevan, J. Taiwan. Inst. Chem. Eng. 44 (2013) 808.10.1016/j.jtice.2013.01.029Search in Google Scholar
8. A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti, B. Kløve, Desalination 284 (2012) 22.10.1016/j.desal.2011.08.033Search in Google Scholar
9. D. M. Manassaram, L. C. Backer, D. M. Moll, Environ. Health Perspect. 114 (2005) 320.10.1289/ehp.8407Search in Google Scholar PubMed PubMed Central
10. M. A. Salam, O. Fageeh, S. A. Al-Thabaiti, A. Y. Obaid, J. Mol. Liq. 212 (2015) 708.10.1016/j.molliq.2015.09.029Search in Google Scholar
11. Z. H. Farooqi, R. Khalid, R. Begum, U. Farooq, Q. Wu, W. Wu, M. Ajmal, A. Irfan, K. Naseem, Environ Technol. 20 (2018) 1.Search in Google Scholar
12. M. Kalaruban, P. Loganathan, W. G. Shim, J. Kandasamy, G. Naidu, T. V. Nguyen, S. Vigneswaran, Sep Purif Technol. 158 (2016) 62.10.1016/j.seppur.2015.12.022Search in Google Scholar
13. M. Pirsaheb, T. Khosravi, K. Sharafi, M. Mouradi, Desalin. Water Treat. 57 (2016) 5391.10.1080/19443994.2015.1004592Search in Google Scholar
14. F. D. Belkada, O. Kitous, N. Drouiche, S. Aoudj, O. Bouchelaghem, N. Abdi, H. Grib, N. Mameri, Sep. Purif. Technol. 204 (2018) 108.10.1016/j.seppur.2018.04.068Search in Google Scholar
15. J. Wang, L. Chu, Biotechnol. Adv. 34 (2016) 1103.10.1016/j.biotechadv.2016.07.001Search in Google Scholar PubMed
16. M. Ahmadi, H. Rahmani, B. Ramavandi, B. Kakavandi, Desalin. Water Treat. 76 (2017) 265.10.5004/dwt.2017.20705Search in Google Scholar
17. Z. He, Y. Xia, B. Tang, J. Su, X. Jiang, Z. Phys. Chem. 233 (2019) 347.10.1515/zpch-2017-1017Search in Google Scholar
18. K. Naseem, Z. H. Farooqi, M. Z. Rehman, M. A. Rehman, M. Ghufran, Rev. Chem. Eng. 35 (2019) 285.10.1515/revce-2017-0042Search in Google Scholar
19. K. Naseem, R. Huma, A. Shahbaz, J. Jamal, M. Z. Rehman, A. Sharif, E. Ahmed, R. Begum, A. Irfan, A. G. Al-Sehemi, Z. H. Farooqi, Z. Phys. Chem. 233 (2019) 201.10.1515/zpch-2018-1182Search in Google Scholar
20. A. Naseer, A. Jamshaid, A. Hamid, N. Muhammad, M. Ghauri, J. Iqbal, S. Rafiq, S. Khuram, N. S. Shah, Z. Phys. Chem. 23 (2019) 315.10.1515/zpch-2018-1209Search in Google Scholar
21. N. U. Khan, H. N. Bhatti, M. Iqbal, A. Nazir, Z. Phys. Chem. 233 (2019) 361.10.1515/zpch-2018-1194Search in Google Scholar
22. A. Bhatnagar, M. Sillanpää, Chem. Eng. J. 168 (2011) 493.10.1016/j.cej.2011.01.103Search in Google Scholar
23. Z. He, Y. Xia, B. Tang, J. Su, X. Jiang, Z. Phys. Chem. 233 (2019) 347.10.1515/zpch-2017-1017Search in Google Scholar
24. C. Richard, J. Simmchen, Z. Phys. Chem. 232 (2018) 747.10.1515/zpch-2017-1087Search in Google Scholar
25. Y. R. Zhang, S. Q. Wang, S. L. Shen, B. X. Zhao, Chem. Eng. J. 233 (2013) 258.10.1016/j.cej.2013.07.009Search in Google Scholar
26. V. K. Gupta, A. Nayak, Chem. Eng. J. 180 (2012) 81.10.1016/j.cej.2011.11.006Search in Google Scholar
27. S. Ata, A. Tabassum, I. Bibi, S. Ghafoor, A. Ahad, M. A. Bhatti, A. Islam, H. Rizvi, M. Iqbal, Z. Phys. Chem. 233 (2019) 995.10.1515/zpch-2018-1203Search in Google Scholar
28. F. Cuomo, F. Venditti, G. Cinelli, A. Ceglie, F. Lopez, Z. Phys. Chem. 230 (2016) 1269.10.1515/zpch-2015-0725Search in Google Scholar
29. R. S. Raveendra, P. A. Prashanth, R. Hari Krishna, N. P. Bhagya, B. M. Nagabhushana, H. Raja Naika, K. Lingaraju, H. Nagabhushana, B. Daruka Prasad, J. Asian Ceram. Soc. 4 (2014) 357.10.1016/j.jascer.2014.07.008Search in Google Scholar
30. S. J. Liu, Z. Y. Zhao, J. Li, J. Wang, Y. Qi, Water Res. 47 (2013) 5977.10.1016/j.watres.2013.06.028Search in Google Scholar PubMed
31. R. H. Kadam, A. P. Birajdar, S. T. Alone, S. E. Shirsath, J. Magn. Magan. Mater 28 (2013) 167.10.1016/j.jmmm.2012.09.059Search in Google Scholar
32. Standard Methods. 4500-NO3- B. 22. ed. Washington: [S.n], 2012.Search in Google Scholar
33. S. Ahmadi, L. Mohammadi, C. A. Igwegbe, S. Rahdar, B. Artur Marek, Int. J. Ind. Eng. Chem. 9 (2018) 241.10.1007/s40090-018-0153-4Search in Google Scholar
34. S. Rahdar, A. Rahdar, C. Adaobi Igwegbe, F. Moghaddam, Desalin. Water Treat. 141 (2019) 1.10.5004/dwt.2019.22720Search in Google Scholar
35. E. Bazrafshan, F. Kord Mostafapour, S. Rahdar, A. H. Mahvi, Desalin. Water Treat. 54 (2015) 2241.10.1080/19443994.2014.895778Search in Google Scholar
36. M. H. Shahmoradi, B. A. Zade, A. Torabian, M. S. Salehi, Arpn. J. Eng. Appl. Sci. 17 (2015) 7856.Search in Google Scholar
37. M. Sanchooli Moghaddam, S. Rahdar, M. Taghavi, Iran. J. Chem. Chem. Eng. 35 (2016) 45.Search in Google Scholar
38. N. Öztürk, T. E. Bektaş, J. Hazard. Mater. 112 (2004) 155.10.1016/j.jhazmat.2004.05.001Search in Google Scholar PubMed
39. D. W. Cho, C. M. Chon, Y. Kim, B. H. Jeon, F. W. Schwartz, E. S. Lee, H. Song, Chem. Eng. 175 (2011) 298.10.1016/j.cej.2011.09.108Search in Google Scholar
40. M. Islam, R. Patel, Desalination 256 (2010) 120.10.1016/j.desal.2010.02.003Search in Google Scholar
41. A. Teimouri, S. G. Nasab, N. Vahdatpoor, S. Habibollahi, H. Salavati, A. N. Chermahini, Int. J. Biol. Macromol. 93 (2016) 254.10.1016/j.ijbiomac.2016.05.089Search in Google Scholar PubMed
42. C. F. Iscen, I. Kiran, S. Ilhan, J. Hazard. Mater. 143 (2007) 335.10.1016/j.jhazmat.2006.09.028Search in Google Scholar PubMed
43. S. T. Akar, A. S. Özcan, Z. Kaynak, Desalination 249 (2009) 757.10.1016/j.desal.2008.09.012Search in Google Scholar
44. S. Banerjee, M. C. Chattopadhyaya, Arab. J. Chem. 10 (2017) 1629.10.1016/j.arabjc.2013.06.005Search in Google Scholar
45. W. W. Ngah, M. A. K. M. Hanafiah, Biochem. Eng. 39 (2008) 521.10.1016/j.bej.2007.11.006Search in Google Scholar
46. O. Gulnaz, A. Kaya, S. Dincer, Chem. Mater. 134 (2006) 190.10.1016/j.jhazmat.2005.10.050Search in Google Scholar
47. S. L. Hii, S. Y. Yong, C. L. Wong, J. Appl. Phycol. 21 (2009) 625.10.1007/s10811-009-9448-3Search in Google Scholar
48. S. Banerjee, M. C. Chattopadhyaya, Arab. J. Chem. 10 (2017) 629.10.1016/j.arabjc.2013.06.005Search in Google Scholar
49. K. Naseem, R. Huma, A. Shahbaz, J. Jamal, M. Z. Rehman, A. Sharif, E. Ahmed, R. Begum, A. Irfan, A. G. Al-Sehemi, Z. H. Farooqi, Z. Phys. Chem. 233 (2019) 201.10.1515/zpch-2018-1182Search in Google Scholar
50. G. Z. Kyzas, P. I. Siafaka, E. G. Pavlidou, K. J. Chrissafis, D. N. Bikiaris, Chem. Eng. 259 (2015) 438.10.1016/j.cej.2014.08.019Search in Google Scholar
51. S. Gholitabar, H. Tahermansouri, Carbon Lett. 30 (2017) 14.Search in Google Scholar
52. H. M. F. Freundlich, J. Phys. Chem. 57 (1906) 385.Search in Google Scholar
53. E. Bazrafshan, S. Rahdar, D. Balarak, F. K. Mostafapour, M. A. Zazouli, Iran. J. Med. Sci. 15 (2015) 15.Search in Google Scholar
54. K. Naseem, R. Begum, W. Wu, M. Usman, A. Irfan, A. G. Al-Sehemi, Z. H. Farooqi, J. Mol. Liq. 277 (2019) 22.10.1016/j.molliq.2018.12.051Search in Google Scholar
55. A. Kara, E. Demirbel, Water Air Soil. Pollut. 223 (2012) 2387.10.1007/s11270-011-1032-1Search in Google Scholar PubMed PubMed Central
56. P. Indhumathi, S. Sathiyaraj, J. P. Koelmel, S. U. Shoba, C. Jayabalakrishnan, M. Saravanabhavan, Z. Phys. Chem. 232 (2018) 527.10.1515/zpch-2016-0900Search in Google Scholar
57. S. Ahmadi, S. Rahdar, C. A. Igwegbe, A. Rahdar, N. Shafighi, F. Sadeghfar, Methods X 6 (2019) 98.Search in Google Scholar
58. K. Naseem, Z. H. Farooqi, M. Z. Rehman, M. A. Rehman, R. Begum, R. Huma, A. Shahbaz, J. Najeeb, A. Irfan, Water Sci. Technol. 77 (2018) 2355.10.2166/wst.2018.190Search in Google Scholar PubMed
59. K. Naseem, Z. H. Farooqi, R. Begum, M. Ghufran, M. Z. Rehman, J. Najeeb, A. Irfan, A. G. Al-Sehemi, J. Mol. Liq. 268 (2018) 229.10.1016/j.molliq.2018.07.039Search in Google Scholar
60. S. Ahmadi, S. Rahdar, C. A. Igwegbe, A. Rahdar, N. Shafighi, F. Sadeghfar, Methods X 6 (2019) 98.10.1016/j.mex.2018.12.009Search in Google Scholar
61. J. Liu, L. Wu, X. Chen, Desalin. Water Treat 5 (2015) 2307.10.1080/19443994.2014.898000Search in Google Scholar
62. A. Rahdar, S. Ahmadi, J. Fu, S. Rahdar, Desalin. Water Treat 137 (2019) 174.10.5004/dwt.2019.23350Search in Google Scholar
63. A. Bhatnagar, E. Kumar, M. Sillanpää, Chem. Eng. 163 (2010) 317.10.1016/j.cej.2010.08.008Search in Google Scholar
64. G. R. Mahdavinia, M. Soleymani, H. Etemadi, M. Sabzi, Z. Atlasi, Int. J. Biol. Macromol. 107 (2018) 719.10.1016/j.ijbiomac.2017.09.042Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2019-1372).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Maximum of Minimal Conductivity in Aqueous Electrolytes
- The Effect of Low Weight Percent Multiwalled Carbon Nanotubes on the Dielectric Properties of Non-Conducting Polymer/Ceramic Nanocomposites for Energy Storage Materials
- Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor
- Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies
- New Heterocyclic Derivative to Stop Carbon Steel Corrosion
- Investigating of Erosion-Corrosion Behavior of Carbon Steel in Egyptian Crude Oil-Water Mixture Using Electrochemical Method
- Structural, Vibrational and UV/Vis Studies of Adamantane-Containing Triazole Thiones by Spectral, DFT and Multi-reference ab initio Methods
- The Effect of Grain Size and Shape on Sliding Friction of Wet Granular Media
- Decomposition Kinetics of Levofloxacin: Drug-Excipient Interaction
- ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye
- An Efficient Ultrasonic-Assisted Synthesis and Nonlinear Optical Property of Donor (D) -π-Acceptor (A) Chalcone (DDFP)
- Synthesized and Photocatalytic Mechanism of the NiO Supported YMnO3 Nanoparticles for Photocatalytic Degradation of the Methyl Orange Dye
Articles in the same Issue
- Frontmatter
- The Maximum of Minimal Conductivity in Aqueous Electrolytes
- The Effect of Low Weight Percent Multiwalled Carbon Nanotubes on the Dielectric Properties of Non-Conducting Polymer/Ceramic Nanocomposites for Energy Storage Materials
- Synthesis, Characterization and Electrical Conductivity of Silver Doped Polyvinyl Acetate/Graphene Nanocomposites: A Novel Humidity Sensor
- Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies
- New Heterocyclic Derivative to Stop Carbon Steel Corrosion
- Investigating of Erosion-Corrosion Behavior of Carbon Steel in Egyptian Crude Oil-Water Mixture Using Electrochemical Method
- Structural, Vibrational and UV/Vis Studies of Adamantane-Containing Triazole Thiones by Spectral, DFT and Multi-reference ab initio Methods
- The Effect of Grain Size and Shape on Sliding Friction of Wet Granular Media
- Decomposition Kinetics of Levofloxacin: Drug-Excipient Interaction
- ZnO/UV/H2O2 Based Advanced Oxidation of Disperse Red Dye
- An Efficient Ultrasonic-Assisted Synthesis and Nonlinear Optical Property of Donor (D) -π-Acceptor (A) Chalcone (DDFP)
- Synthesized and Photocatalytic Mechanism of the NiO Supported YMnO3 Nanoparticles for Photocatalytic Degradation of the Methyl Orange Dye