Startseite XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations

  • Mahdi Rakhshi , Mohsen Mohsennia EMAIL logo und Hossein Rasa
Veröffentlicht/Copyright: 28. Mai 2018

Abstract

The adsorption energies (Ead), interaction distances, changes of geometric and electronic structures of XH3 (X=P or N) gas molecule adsorption on pristine, platinum (Pt) doped and vacancy-defected single-walled (8,8) boron nitride nanotubes (BNNTs) have been calculated using the density functional theory (DFT). The effect of the Pt doping on B and N sites (PtB,N-doped) and the B and N vacancy defects (VB,N-defected BNNT) on the sensing behavior of pristine (8,8) BNNTs toward PH3 and NH3 gases have been examined. According to the obtained results, PH3 and NH3 molecules were more likely to be absorbed on the PtB,N-doped and VN-defected BNNT with relatively higher Ead compared with the pristine and VB-defected BNNTs. Therefore the order of the obtained Ead were PtB-doped BNNT/NH3>PtB-doped BNNT/PH3>PtN-doped BNNT/NH3>PtN-doped BNNT/PH3 for the PtB,N-doped BNNTs, and VN-defected BNNT/NH3>VN-defected BNNT/PH3>VB-defected BNNT/NH3>VB-defected BNNT/PH3 for the VB,N-defected BNNTs systems. The partial density of states (PDOS) of the adsorption systems indicated the strong interaction between the adsorbed PH3 and NH3 molecules and the substrates, i.e. PtB,N-doped BNNT and VN-defected BNNT. Therefore, it can concluded that the PtB,N-doped and VN-defected BNNTs have potential applicability in the gas-sensing detection of PH3 and NH3 with good sensitivity.

Acknowledgements

Authors are grateful to University of Kashan, Kashan, Iran, for partial financial support of this work.

References

1. J. Zhao, A. Buldum, J. Han, J. P. Lu, Nanotechnology 13 (2002) 195.10.1088/0957-4484/13/2/312Suche in Google Scholar

2. A. Ricca, C. W. Bauschlicher Jr, Chem. Phys. 323 (2006) 511.10.1016/j.chemphys.2005.10.019Suche in Google Scholar

3. A. A. Rafati, S. M. Hashemianzadeh, Z. B. Nojini, J. Phys. Chem. C 112 (2008) 3597.10.1021/jp709955gSuche in Google Scholar

4. K. Azizi, S. M. Hashemianzadeh, S. Bahramifar, Curr. Appl. Phys. 11 (2011) 776.10.1016/j.cap.2010.11.071Suche in Google Scholar

5. A. Ricca, C. W. Bauschlicher Jr, Chem. Phys. 324 (2006) 455.10.1016/j.chemphys.2005.11.010Suche in Google Scholar

6. S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. M. Kenny, B. Delley, J. Chem. Phys. 119 (2003) 10904.10.1063/1.1619948Suche in Google Scholar

7. Z. Zanolli, J. C. Charlier, Phys. Rev. B 80 (2009) 155447.10.1103/PhysRevB.80.155447Suche in Google Scholar

8. L. V. Liu, W. Q. Tian, Y. A. Wang, J. Phys. Chem. B 110 (2006) 1999.10.1021/jp053931bSuche in Google Scholar PubMed

9. S. Tang, Z. Cao, J. Chem. Phys. 131 (2009) 114706.10.1063/1.3226572Suche in Google Scholar PubMed

10. J. Horstmann, S. Reger, B. Neumann, H. Stammler, N. W. Mitzel, Z. Naturforsch B 72(1)a (2017) 7.10.1515/znb-2017-0027Suche in Google Scholar

11. J. M. Garcia-Lastra, D. J. Mowbray, K. S. Thygesen, A. Rubio, K. W. Jacobsen, Phys. Rev. B 81 (2010) 245429.10.1103/PhysRevB.81.245429Suche in Google Scholar

12. P. A. Denis, Chem. Phys. 353 (2008) 79.10.1016/j.chemphys.2008.07.024Suche in Google Scholar

13. C. S. Yeung, L. V. Liu, Y. A. Wang, J. Phys. Chem. C 112 (2008) 7401.10.1021/jp0753981Suche in Google Scholar

14. J. X. Zhao, Y. H. Ding, Mater. Chem. Phys. 110 (2008) 411.10.1016/j.matchemphys.2008.02.036Suche in Google Scholar

15. W. An, C. H. Turner, Chem. Phys. Lett. 482 (2009) 274.10.1016/j.cplett.2009.10.008Suche in Google Scholar

16. Z. Zhou, J. Zhao, Z. Chen, X. Gao, T. Yan, B. Wen, P. V. R. Schleyer, J. Phys. Chem. B 110 (2006) 13363.10.1021/jp0622740Suche in Google Scholar PubMed

17. N. Promthong, N. Nunthaboot, W. Banchob, Z. Phys. Chem. 230 (2015) 283.10.1515/zpch-2015-0612Suche in Google Scholar

18. J. X. Zhao, Y. H. Ding, J. Phys. Chem. C 112 (2008) 20206.10.1021/jp805790sSuche in Google Scholar

19. Y. Chen, C. L. Hu, J. Q. Li, G. X. Jia, Y. F. Zhang, Chem. Phys. Lett. 449 (2007) 149.10.1016/j.cplett.2007.09.021Suche in Google Scholar

20. M. T. Baei, A. R. Soltani, A. V. Moradi, E. T. Lemeski, Comput. Theor. Chem. 970 (2011) 30.10.1016/j.comptc.2011.05.021Suche in Google Scholar

21. S. Venkatachalam, T. Jacob, Z. Phys. Chem. 221 (2007) 1406.10.1524/zpch.2007.221.9-10.1393Suche in Google Scholar

22. J. Zhang, K. P. Loh, J. Zheng, M. B. Sullivan, P. Wu, Phys. Rev. B 75 (2007) 245301.10.1103/PhysRevB.75.245301Suche in Google Scholar

23. R. Wang, D. Zhang, Aust. J. Chem. 61 (2008) 941.10.1071/CH08226Suche in Google Scholar

24. R. J. Baierle, T. M. Schmidt, A. Fazzio, Solid State Commun. 142 (2007) 49.10.1016/j.ssc.2007.01.036Suche in Google Scholar

25. R. J. Baierle, P. Piquini, T. M. Schmidt, A. Fazzio, J. Phys. Chem. B 110 (2006) 21184.10.1021/jp061587sSuche in Google Scholar PubMed

26. Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, J. Mol. Struct. (Theochem) 948 (2010) 83.10.1016/j.theochem.2010.02.024Suche in Google Scholar

27. X. Wu, J. L. Yang, X. C. Zeng, J. Chem. Phys. 125 (2006) 044704.10.1063/1.2210933Suche in Google Scholar PubMed

28. X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, L. Jiang, J. Mol. Struct. (Theochem) 901 (2009) 103.10.1016/j.theochem.2009.01.019Suche in Google Scholar

29. E. Durgun, Y. R. Jang, S. Ciraci, Phys. Rev. B 76 (2007) 073413.10.1103/PhysRevB.76.073413Suche in Google Scholar

30. R. Geetha, V. Gayathri, Curr. Nanosci. 6 (2010) 131.10.2174/157341310790945731Suche in Google Scholar

31. X. Wu, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 124 (2006) 054706.10.1063/1.2162897Suche in Google Scholar PubMed

32. J. X. Zhao, Y. H. Ding, J. Chem. Phys. 131 (2009) 014706.10.1063/1.3167409Suche in Google Scholar PubMed

33. W. An, X. Wu, J. L. Yang, X. C. Zeng, J. Phys. Chem. C 111 (2007) 14105.10.1021/jp072443wSuche in Google Scholar

34. R. Q. Wu, M. Yang, Y. H. Lu, Y. P. Feng, Z. G. Huang, Q. Y. Wu, J. Phys. Chem. C 112 (2008) 15985.10.1021/jp804727cSuche in Google Scholar

35. G. Gao, S. H. Park, H. S. Kang, Chem. Phys. 355 (2009) 50.10.1016/j.chemphys.2008.10.049Suche in Google Scholar

36. G. Gao, H. S. Kang, J. Chem. Theory Comput. 4 (2008) 1690.10.1021/ct800273cSuche in Google Scholar PubMed

37. R. L. Liang, Y. Zhang, J. M. Zhang, Appl. Surf. Sci. 257 (2010) 282.10.1016/j.apsusc.2010.06.087Suche in Google Scholar

38. M. D. Ganji, B. Ahaz, Commun. Theor. Phys. 53 (2010) 742.10.1088/0253-6102/53/4/29Suche in Google Scholar

39. W. An, X. Wu, X. C. Zeng, J. Phys. Chem. C 112 (2008) 5747.10.1021/jp711105dSuche in Google Scholar

40. F. Lin, G. Zhou, Z. Li, J. Li, J. Wu, W. Duan, Chem. Phys. Lett. 475 (2009) 82.10.1016/j.cplett.2009.05.018Suche in Google Scholar

41. M. D. Ganji, Phys. Lett. A 372 (2008) 3277.10.1016/j.physleta.2008.01.032Suche in Google Scholar

42. M. Yang, Y. Zhang, S. Huang, H. Liu, P. Wang, H. Tian, Appl. Surf. Sci. 258 (2011) 1429.10.1016/j.apsusc.2011.09.097Suche in Google Scholar

43. A. Rubio, J. L. Corkill, M. L. Cohen, Phys. Rev. B 49 (1994) 5081.10.1103/PhysRevB.49.5081Suche in Google Scholar PubMed

44. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Science 269 (1995) 966.10.1126/science.269.5226.966Suche in Google Scholar PubMed

45. M. Shelef, Chem. Rev. 95 (1995) 209.10.1021/cr00033a008Suche in Google Scholar

46. X. M. Li, W. Q. Tian, Q. Dong, X. R. Huang, C. C. Sun, L. Jiang, Comput. Theor. Chem. 964 (2011) 199.10.1016/j.comptc.2010.12.026Suche in Google Scholar

47. K. H. He, G. Zheng, G. Chen, M. Wan, G. F. Ji, Physica B 403 (2008) 4213.10.1016/j.physb.2008.09.023Suche in Google Scholar

48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT (2009).Suche in Google Scholar

49. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar PubMed

50. M. S. Khan, A. Srivastava, R. Chaurasiya, M. S. Khan, Chem. Phys. Lett. 636 (2015) 103.10.1016/j.cplett.2015.07.038Suche in Google Scholar

51. J. P. Hay, R. W. Wadt, J. Chem. Phys. 82 (1985) 270.10.1063/1.448799Suche in Google Scholar

52. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar

53. S. S. Li, Semiconductor Physical Electronics, 2nd edn. Springer, Heidelberg (2006).10.1007/0-387-37766-2Suche in Google Scholar

54. S. A. Aal, Surf. Sci. 644 (2016) 1.10.1016/j.susc.2015.08.024Suche in Google Scholar

55. R. J. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSuche in Google Scholar

56. T. Koopmans, Physica 1 (1933) 104.10.1016/S0031-8914(34)90011-2Suche in Google Scholar

57. J. Beheshtian, A. A. Peyghan, Z. Bagheri, Sens. Actuators B: Chem. 171–172 (2012) 846.10.1016/j.snb.2012.05.082Suche in Google Scholar

Received: 2018-05-03
Accepted: 2018-05-06
Published Online: 2018-05-28
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1219/html?lang=de
Button zum nach oben scrollen