Abstract
The adsorption energies (Ead), interaction distances, changes of geometric and electronic structures of XH3 (X=P or N) gas molecule adsorption on pristine, platinum (Pt) doped and vacancy-defected single-walled (8,8) boron nitride nanotubes (BNNTs) have been calculated using the density functional theory (DFT). The effect of the Pt doping on B and N sites (PtB,N-doped) and the B and N vacancy defects (VB,N-defected BNNT) on the sensing behavior of pristine (8,8) BNNTs toward PH3 and NH3 gases have been examined. According to the obtained results, PH3 and NH3 molecules were more likely to be absorbed on the PtB,N-doped and VN-defected BNNT with relatively higher Ead compared with the pristine and VB-defected BNNTs. Therefore the order of the obtained Ead were PtB-doped BNNT/NH3>PtB-doped BNNT/PH3>PtN-doped BNNT/NH3>PtN-doped BNNT/PH3 for the PtB,N-doped BNNTs, and VN-defected BNNT/NH3>VN-defected BNNT/PH3>VB-defected BNNT/NH3>VB-defected BNNT/PH3 for the VB,N-defected BNNTs systems. The partial density of states (PDOS) of the adsorption systems indicated the strong interaction between the adsorbed PH3 and NH3 molecules and the substrates, i.e. PtB,N-doped BNNT and VN-defected BNNT. Therefore, it can concluded that the PtB,N-doped and VN-defected BNNTs have potential applicability in the gas-sensing detection of PH3 and NH3 with good sensitivity.
Acknowledgements
Authors are grateful to University of Kashan, Kashan, Iran, for partial financial support of this work.
References
1. J. Zhao, A. Buldum, J. Han, J. P. Lu, Nanotechnology 13 (2002) 195.10.1088/0957-4484/13/2/312Suche in Google Scholar
2. A. Ricca, C. W. Bauschlicher Jr, Chem. Phys. 323 (2006) 511.10.1016/j.chemphys.2005.10.019Suche in Google Scholar
3. A. A. Rafati, S. M. Hashemianzadeh, Z. B. Nojini, J. Phys. Chem. C 112 (2008) 3597.10.1021/jp709955gSuche in Google Scholar
4. K. Azizi, S. M. Hashemianzadeh, S. Bahramifar, Curr. Appl. Phys. 11 (2011) 776.10.1016/j.cap.2010.11.071Suche in Google Scholar
5. A. Ricca, C. W. Bauschlicher Jr, Chem. Phys. 324 (2006) 455.10.1016/j.chemphys.2005.11.010Suche in Google Scholar
6. S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. M. Kenny, B. Delley, J. Chem. Phys. 119 (2003) 10904.10.1063/1.1619948Suche in Google Scholar
7. Z. Zanolli, J. C. Charlier, Phys. Rev. B 80 (2009) 155447.10.1103/PhysRevB.80.155447Suche in Google Scholar
8. L. V. Liu, W. Q. Tian, Y. A. Wang, J. Phys. Chem. B 110 (2006) 1999.10.1021/jp053931bSuche in Google Scholar PubMed
9. S. Tang, Z. Cao, J. Chem. Phys. 131 (2009) 114706.10.1063/1.3226572Suche in Google Scholar PubMed
10. J. Horstmann, S. Reger, B. Neumann, H. Stammler, N. W. Mitzel, Z. Naturforsch B 72(1)a (2017) 7.10.1515/znb-2017-0027Suche in Google Scholar
11. J. M. Garcia-Lastra, D. J. Mowbray, K. S. Thygesen, A. Rubio, K. W. Jacobsen, Phys. Rev. B 81 (2010) 245429.10.1103/PhysRevB.81.245429Suche in Google Scholar
12. P. A. Denis, Chem. Phys. 353 (2008) 79.10.1016/j.chemphys.2008.07.024Suche in Google Scholar
13. C. S. Yeung, L. V. Liu, Y. A. Wang, J. Phys. Chem. C 112 (2008) 7401.10.1021/jp0753981Suche in Google Scholar
14. J. X. Zhao, Y. H. Ding, Mater. Chem. Phys. 110 (2008) 411.10.1016/j.matchemphys.2008.02.036Suche in Google Scholar
15. W. An, C. H. Turner, Chem. Phys. Lett. 482 (2009) 274.10.1016/j.cplett.2009.10.008Suche in Google Scholar
16. Z. Zhou, J. Zhao, Z. Chen, X. Gao, T. Yan, B. Wen, P. V. R. Schleyer, J. Phys. Chem. B 110 (2006) 13363.10.1021/jp0622740Suche in Google Scholar PubMed
17. N. Promthong, N. Nunthaboot, W. Banchob, Z. Phys. Chem. 230 (2015) 283.10.1515/zpch-2015-0612Suche in Google Scholar
18. J. X. Zhao, Y. H. Ding, J. Phys. Chem. C 112 (2008) 20206.10.1021/jp805790sSuche in Google Scholar
19. Y. Chen, C. L. Hu, J. Q. Li, G. X. Jia, Y. F. Zhang, Chem. Phys. Lett. 449 (2007) 149.10.1016/j.cplett.2007.09.021Suche in Google Scholar
20. M. T. Baei, A. R. Soltani, A. V. Moradi, E. T. Lemeski, Comput. Theor. Chem. 970 (2011) 30.10.1016/j.comptc.2011.05.021Suche in Google Scholar
21. S. Venkatachalam, T. Jacob, Z. Phys. Chem. 221 (2007) 1406.10.1524/zpch.2007.221.9-10.1393Suche in Google Scholar
22. J. Zhang, K. P. Loh, J. Zheng, M. B. Sullivan, P. Wu, Phys. Rev. B 75 (2007) 245301.10.1103/PhysRevB.75.245301Suche in Google Scholar
23. R. Wang, D. Zhang, Aust. J. Chem. 61 (2008) 941.10.1071/CH08226Suche in Google Scholar
24. R. J. Baierle, T. M. Schmidt, A. Fazzio, Solid State Commun. 142 (2007) 49.10.1016/j.ssc.2007.01.036Suche in Google Scholar
25. R. J. Baierle, P. Piquini, T. M. Schmidt, A. Fazzio, J. Phys. Chem. B 110 (2006) 21184.10.1021/jp061587sSuche in Google Scholar PubMed
26. Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, J. Mol. Struct. (Theochem) 948 (2010) 83.10.1016/j.theochem.2010.02.024Suche in Google Scholar
27. X. Wu, J. L. Yang, X. C. Zeng, J. Chem. Phys. 125 (2006) 044704.10.1063/1.2210933Suche in Google Scholar PubMed
28. X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, L. Jiang, J. Mol. Struct. (Theochem) 901 (2009) 103.10.1016/j.theochem.2009.01.019Suche in Google Scholar
29. E. Durgun, Y. R. Jang, S. Ciraci, Phys. Rev. B 76 (2007) 073413.10.1103/PhysRevB.76.073413Suche in Google Scholar
30. R. Geetha, V. Gayathri, Curr. Nanosci. 6 (2010) 131.10.2174/157341310790945731Suche in Google Scholar
31. X. Wu, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 124 (2006) 054706.10.1063/1.2162897Suche in Google Scholar PubMed
32. J. X. Zhao, Y. H. Ding, J. Chem. Phys. 131 (2009) 014706.10.1063/1.3167409Suche in Google Scholar PubMed
33. W. An, X. Wu, J. L. Yang, X. C. Zeng, J. Phys. Chem. C 111 (2007) 14105.10.1021/jp072443wSuche in Google Scholar
34. R. Q. Wu, M. Yang, Y. H. Lu, Y. P. Feng, Z. G. Huang, Q. Y. Wu, J. Phys. Chem. C 112 (2008) 15985.10.1021/jp804727cSuche in Google Scholar
35. G. Gao, S. H. Park, H. S. Kang, Chem. Phys. 355 (2009) 50.10.1016/j.chemphys.2008.10.049Suche in Google Scholar
36. G. Gao, H. S. Kang, J. Chem. Theory Comput. 4 (2008) 1690.10.1021/ct800273cSuche in Google Scholar PubMed
37. R. L. Liang, Y. Zhang, J. M. Zhang, Appl. Surf. Sci. 257 (2010) 282.10.1016/j.apsusc.2010.06.087Suche in Google Scholar
38. M. D. Ganji, B. Ahaz, Commun. Theor. Phys. 53 (2010) 742.10.1088/0253-6102/53/4/29Suche in Google Scholar
39. W. An, X. Wu, X. C. Zeng, J. Phys. Chem. C 112 (2008) 5747.10.1021/jp711105dSuche in Google Scholar
40. F. Lin, G. Zhou, Z. Li, J. Li, J. Wu, W. Duan, Chem. Phys. Lett. 475 (2009) 82.10.1016/j.cplett.2009.05.018Suche in Google Scholar
41. M. D. Ganji, Phys. Lett. A 372 (2008) 3277.10.1016/j.physleta.2008.01.032Suche in Google Scholar
42. M. Yang, Y. Zhang, S. Huang, H. Liu, P. Wang, H. Tian, Appl. Surf. Sci. 258 (2011) 1429.10.1016/j.apsusc.2011.09.097Suche in Google Scholar
43. A. Rubio, J. L. Corkill, M. L. Cohen, Phys. Rev. B 49 (1994) 5081.10.1103/PhysRevB.49.5081Suche in Google Scholar PubMed
44. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Science 269 (1995) 966.10.1126/science.269.5226.966Suche in Google Scholar PubMed
45. M. Shelef, Chem. Rev. 95 (1995) 209.10.1021/cr00033a008Suche in Google Scholar
46. X. M. Li, W. Q. Tian, Q. Dong, X. R. Huang, C. C. Sun, L. Jiang, Comput. Theor. Chem. 964 (2011) 199.10.1016/j.comptc.2010.12.026Suche in Google Scholar
47. K. H. He, G. Zheng, G. Chen, M. Wan, G. F. Ji, Physica B 403 (2008) 4213.10.1016/j.physb.2008.09.023Suche in Google Scholar
48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT (2009).Suche in Google Scholar
49. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar PubMed
50. M. S. Khan, A. Srivastava, R. Chaurasiya, M. S. Khan, Chem. Phys. Lett. 636 (2015) 103.10.1016/j.cplett.2015.07.038Suche in Google Scholar
51. J. P. Hay, R. W. Wadt, J. Chem. Phys. 82 (1985) 270.10.1063/1.448799Suche in Google Scholar
52. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar
53. S. S. Li, Semiconductor Physical Electronics, 2nd edn. Springer, Heidelberg (2006).10.1007/0-387-37766-2Suche in Google Scholar
54. S. A. Aal, Surf. Sci. 644 (2016) 1.10.1016/j.susc.2015.08.024Suche in Google Scholar
55. R. J. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSuche in Google Scholar
56. T. Koopmans, Physica 1 (1933) 104.10.1016/S0031-8914(34)90011-2Suche in Google Scholar
57. J. Beheshtian, A. A. Peyghan, Z. Bagheri, Sens. Actuators B: Chem. 171–172 (2012) 846.10.1016/j.snb.2012.05.082Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview
- Optimal co-catalytic effect of NiFe2O4/ZnO nanocomposites toward enhanced photodegradation for dye MB
- Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics
- Preparation and Chemical Modification of Rice Husk Char for the Removal of a Toxic Dye (Orange G) from Aqueous Medium
- Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate
- Furosemide–Cetyltrimethylammonium Bromide Interactions in Aqueous Dimethylsulfoxide Solutions: Physico–Chemical Studies
- XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations
- Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs
Artikel in diesem Heft
- Frontmatter
- Review Article
- Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview
- Optimal co-catalytic effect of NiFe2O4/ZnO nanocomposites toward enhanced photodegradation for dye MB
- Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics
- Preparation and Chemical Modification of Rice Husk Char for the Removal of a Toxic Dye (Orange G) from Aqueous Medium
- Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate
- Furosemide–Cetyltrimethylammonium Bromide Interactions in Aqueous Dimethylsulfoxide Solutions: Physico–Chemical Studies
- XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations
- Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs