Abstract
A series of magnetically recyclable NiFe2O4/ZnO nanocomposites have been successfully fabricated by a facile two-step route. The as-prepared NiFe2O4/ZnO nanocomposites were characterized by X-ray diffraction, field-emission scanning electron microscopy, vibrating sample magnetometer, ultraviolet-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. The results demonstrate that the NiFe2O4/ZnO nanocomposites are composed of ZnO particles (50–120 nm) integrated with NiFe2O4 particles (30–80 nm). Compared with bare ZnO, the NiFe2O4/ZnO nanocomposites exhibit evidently enhanced visible light absorption and decreased recombination of photo-generated electron-hole pairs. Moreover, the nanocomposites exhibit enhanced photocatalytic performance for the degradation of methylene blue under simulated solar light irradiation when compared with bare ZnO, and the 20%-NiFe2O4/ZnO nanocomposite is observed as the optimal composite. This is ascribed to the more efficient separation of photo-generated electron-hole pairs and generation of hydroxyl (˙OH) radicals in the 20%-NiFe2O4/ZnO nanocomposite. Furthermore, the NiFe2O4/ZnO nanocomposites have a high saturation magnetization, indicating that they can be magnetically separated and recycled from organic dye wastewater.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 61107055
Funding statement: This work was supported by the National Natural Science Foundation of China (61107055) and the Universities-Funded Natural Science Project of Jiangsu Province (15KJD430004).
References
1. A. Ahmad, S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar and M. Rafatullah, RSC Adv. 5 (2015) 30801.10.1039/C4RA16959JSearch in Google Scholar
2. Z. M. Cui, H. Yang, X. X. Zhao, Mater. Sci. Eng. B 229 (2018) 160.10.1016/j.mseb.2017.12.037Search in Google Scholar
3. F. Wang, H. Yang, Y. C. Zhang, Mater. Sci. Semicond. Proc. 73 (2018) 58.10.1016/j.mssp.2017.09.029Search in Google Scholar
4. L. J. Di, H. Yang, T. Xian, X. X. Chen, Materials 10 (2017) 1118.10.3390/ma10101118Search in Google Scholar PubMed PubMed Central
5. K. J. Liu, J. Y. Zhang, H. Gao, T. F. Xie, D. J. Wang, J. Alloy Compd. 552 (2013) 299.10.1016/j.jallcom.2012.10.111Search in Google Scholar
6. J. C. Colmenares, E. Kuna, S. Jakubiak, J. Michalski, K. Kurzydłowski, Appl. Catal. B Environ. 170–171 (2015) 273.10.1016/j.apcatb.2015.01.031Search in Google Scholar
7. C. Han, M. Q. Yang, B. Weng, Y. J. Xu, Chem. Phys. 16 (2014) 16891.10.1039/C4CP02189DSearch in Google Scholar
8. M. Saeed, M. Siddique, M. Usman, A. U. Haq, S. G. Khan, H. A. Raoof, Z. Phys. Chem. 231 (2016) 1559.10.1515/zpch-2016-0921Search in Google Scholar
9. H. K. Farag, A. M. El-Shamy, E. M. Sherif, Z. Phys. Chem. 230 (2016) 1733.10.1515/zpch-2016-0777Search in Google Scholar
10. Z. M. He, Y. M. Xia, B. Tang, X. F. Jiang, J. B. Su, Mater. Lett. 184 (2016) 148.10.1016/j.matlet.2016.08.020Search in Google Scholar
11. J. K. Vaishnav, S. S. Arbuj, S. B. Rane, D. P. Amalnerkar, RSC Adv. 4 (2014) 47637.10.1039/C4RA08561BSearch in Google Scholar
12. J. Baima, A. Erba, L. Maschio, C. M. Zicovich-Wilson, R. Dovesi, B. Kirtman, Z. Phys. Chem. 230 (2015) 719.10.1515/zpch-2015-0701Search in Google Scholar
13. C. X. Zheng, H. Yang, Z. M. Cui, H. M. Zhang, X. X. Wang, Nanoscale Res. Lett. 12 (2017) 608.10.1186/s11671-017-2377-1Search in Google Scholar PubMed PubMed Central
14. Z. M. He, Y. M. Xia, B. Tang, J. B. Su, Mater Res. Express 4 (2017) 095501.10.1088/2053-1591/aa7cb8Search in Google Scholar
15. X. J. Chen, Y. Z. Dai, T. H. Liu, J. Guo, X. Y. Wang, F. F. Li, J. Mol. Catal. A Chem. 409 (2015) 198.10.1016/j.molcata.2015.08.021Search in Google Scholar
16. S. S. Patil, M. S. Tamboli, V. G. Deonikar, G. G. Umarji, J. D. Ambekar, M. V. Kulkarni, S. S. Kolekar, B. B. Kale, D. R. Patil, Dalton Trans. 44 (2015) 20426.10.1039/C5DT03173GSearch in Google Scholar PubMed
17. Y. L. Li, Z. Q. Zhang, L. Y. Pei, X. G. Li, T. Fan, J. Ji, J. F. Shen, M. X. Ye, Appl. Catal. B Environ. 190 (2016) 1.10.1016/j.apcatb.2016.02.054Search in Google Scholar
18. E. Casbeer, V. K. Sharma, X. Z. Li, Sep. Purif. Technol. 87 (2012) 1.10.1016/j.seppur.2011.11.034Search in Google Scholar
19. N. M. Mahmoodi, J. Taiwan Inst. Chem. Eng.44 (2013) 322.10.1016/j.jtice.2012.11.014Search in Google Scholar
20. L. Sun, R. Shao, L. Tang, Z. Chen, J. Alloy Compd. 564 (2013) 55.10.1016/j.jallcom.2013.02.147Search in Google Scholar
21. X. J. Chen, Y. Z. Dai, J. Guo, T. H. Liu, X. Y. Wang, Ind. Eng. Chem. Res. 55 (2016) 568.10.1021/acs.iecr.5b03690Search in Google Scholar
22. J. Jiang, L. H. Ai, L. C. Li, H. Liu, J. Alloys Compd. 484 (2009) 69.10.1016/j.jallcom.2009.04.060Search in Google Scholar
23. L. Zhang, W. L. Jiao, J. Alloy Compd. 581 (2013) 11.10.1016/j.jallcom.2013.06.157Search in Google Scholar
24. H. Y. Zhu, R. Jiang, Y. Q. Fu, R. R. Li, J. Yao, S. T. Jiang, Appl. Surf. Sci. 369 (2016) 1.10.1016/j.apsusc.2016.02.025Search in Google Scholar
25. X. Guo, H. J. Zhu, Q. Li, Appl. Catal. B Environ. 160–161 (2014) 408.10.1016/j.apcatb.2014.05.047Search in Google Scholar
26. M. Sun, T. Li, Z. Zhang, N. Wang, A. Xie, X. Lv, Y. Wang, F. Wu, M. Wang, RSC Adv. 5 (2015) 84406.10.1039/C5RA16389GSearch in Google Scholar
27. Y. M. Xia, Z. M. He, J. B. Su, B. Tang, K. J. Hu, Y. L. Lu, S. P. Sun, X. P. Li, RSC Adv. 8 (2018) 4284.10.1039/C7RA12546ASearch in Google Scholar
28. X. Zhao, H. Yang, Z. Cui, R. Li, W. Feng, Mater. Technol. 32 (2017) 870.10.1080/10667857.2017.1371914Search in Google Scholar
29. F. Wang, H. Yang, H. M. Zhang, J. L. Jiang, J. Mater. Sci. Mater. Electron. 29 (2018) 1304.10.1007/s10854-017-8036-6Search in Google Scholar
30. Y. C. Ye, H. Yang, R. S. Li, X. X. Wang, J. Sol-Gel Sci. Technol. 82 (2017) 509.10.1007/s10971-017-4332-0Search in Google Scholar
31. R. H. Kodama, A. E. Berkowitz Jr, E. J. McNiff, S. Foner, Phys. Rev. Lett. 77 (1996) 394.10.1103/PhysRevLett.77.394Search in Google Scholar PubMed
32. Y. M. Xia, Z. M. He, J. B. Su, B. Tang, K. J. Hu, Y. L. Lu, S. P. Sun, X. P. Li, RSC Adv. 8 (2018) 5441.10.1039/C7RA12393KSearch in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview
- Optimal co-catalytic effect of NiFe2O4/ZnO nanocomposites toward enhanced photodegradation for dye MB
- Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics
- Preparation and Chemical Modification of Rice Husk Char for the Removal of a Toxic Dye (Orange G) from Aqueous Medium
- Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate
- Furosemide–Cetyltrimethylammonium Bromide Interactions in Aqueous Dimethylsulfoxide Solutions: Physico–Chemical Studies
- XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations
- Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs
Articles in the same Issue
- Frontmatter
- Review Article
- Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview
- Optimal co-catalytic effect of NiFe2O4/ZnO nanocomposites toward enhanced photodegradation for dye MB
- Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics
- Preparation and Chemical Modification of Rice Husk Char for the Removal of a Toxic Dye (Orange G) from Aqueous Medium
- Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate
- Furosemide–Cetyltrimethylammonium Bromide Interactions in Aqueous Dimethylsulfoxide Solutions: Physico–Chemical Studies
- XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations
- Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs