Abstract
The adsorption energies (Ead), interaction distances, changes of geometric and electronic structures of XH3 (X=P or N) gas molecule adsorption on pristine, platinum (Pt) doped and vacancy-defected single-walled (8,8) boron nitride nanotubes (BNNTs) have been calculated using the density functional theory (DFT). The effect of the Pt doping on B and N sites (PtB,N-doped) and the B and N vacancy defects (VB,N-defected BNNT) on the sensing behavior of pristine (8,8) BNNTs toward PH3 and NH3 gases have been examined. According to the obtained results, PH3 and NH3 molecules were more likely to be absorbed on the PtB,N-doped and VN-defected BNNT with relatively higher Ead compared with the pristine and VB-defected BNNTs. Therefore the order of the obtained Ead were PtB-doped BNNT/NH3>PtB-doped BNNT/PH3>PtN-doped BNNT/NH3>PtN-doped BNNT/PH3 for the PtB,N-doped BNNTs, and VN-defected BNNT/NH3>VN-defected BNNT/PH3>VB-defected BNNT/NH3>VB-defected BNNT/PH3 for the VB,N-defected BNNTs systems. The partial density of states (PDOS) of the adsorption systems indicated the strong interaction between the adsorbed PH3 and NH3 molecules and the substrates, i.e. PtB,N-doped BNNT and VN-defected BNNT. Therefore, it can concluded that the PtB,N-doped and VN-defected BNNTs have potential applicability in the gas-sensing detection of PH3 and NH3 with good sensitivity.
Acknowledgements
Authors are grateful to University of Kashan, Kashan, Iran, for partial financial support of this work.
References
1. J. Zhao, A. Buldum, J. Han, J. P. Lu, Nanotechnology 13 (2002) 195.10.1088/0957-4484/13/2/312Search in Google Scholar
2. A. Ricca, C. W. Bauschlicher Jr, Chem. Phys. 323 (2006) 511.10.1016/j.chemphys.2005.10.019Search in Google Scholar
3. A. A. Rafati, S. M. Hashemianzadeh, Z. B. Nojini, J. Phys. Chem. C 112 (2008) 3597.10.1021/jp709955gSearch in Google Scholar
4. K. Azizi, S. M. Hashemianzadeh, S. Bahramifar, Curr. Appl. Phys. 11 (2011) 776.10.1016/j.cap.2010.11.071Search in Google Scholar
5. A. Ricca, C. W. Bauschlicher Jr, Chem. Phys. 324 (2006) 455.10.1016/j.chemphys.2005.11.010Search in Google Scholar
6. S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. M. Kenny, B. Delley, J. Chem. Phys. 119 (2003) 10904.10.1063/1.1619948Search in Google Scholar
7. Z. Zanolli, J. C. Charlier, Phys. Rev. B 80 (2009) 155447.10.1103/PhysRevB.80.155447Search in Google Scholar
8. L. V. Liu, W. Q. Tian, Y. A. Wang, J. Phys. Chem. B 110 (2006) 1999.10.1021/jp053931bSearch in Google Scholar PubMed
9. S. Tang, Z. Cao, J. Chem. Phys. 131 (2009) 114706.10.1063/1.3226572Search in Google Scholar PubMed
10. J. Horstmann, S. Reger, B. Neumann, H. Stammler, N. W. Mitzel, Z. Naturforsch B 72(1)a (2017) 7.10.1515/znb-2017-0027Search in Google Scholar
11. J. M. Garcia-Lastra, D. J. Mowbray, K. S. Thygesen, A. Rubio, K. W. Jacobsen, Phys. Rev. B 81 (2010) 245429.10.1103/PhysRevB.81.245429Search in Google Scholar
12. P. A. Denis, Chem. Phys. 353 (2008) 79.10.1016/j.chemphys.2008.07.024Search in Google Scholar
13. C. S. Yeung, L. V. Liu, Y. A. Wang, J. Phys. Chem. C 112 (2008) 7401.10.1021/jp0753981Search in Google Scholar
14. J. X. Zhao, Y. H. Ding, Mater. Chem. Phys. 110 (2008) 411.10.1016/j.matchemphys.2008.02.036Search in Google Scholar
15. W. An, C. H. Turner, Chem. Phys. Lett. 482 (2009) 274.10.1016/j.cplett.2009.10.008Search in Google Scholar
16. Z. Zhou, J. Zhao, Z. Chen, X. Gao, T. Yan, B. Wen, P. V. R. Schleyer, J. Phys. Chem. B 110 (2006) 13363.10.1021/jp0622740Search in Google Scholar PubMed
17. N. Promthong, N. Nunthaboot, W. Banchob, Z. Phys. Chem. 230 (2015) 283.10.1515/zpch-2015-0612Search in Google Scholar
18. J. X. Zhao, Y. H. Ding, J. Phys. Chem. C 112 (2008) 20206.10.1021/jp805790sSearch in Google Scholar
19. Y. Chen, C. L. Hu, J. Q. Li, G. X. Jia, Y. F. Zhang, Chem. Phys. Lett. 449 (2007) 149.10.1016/j.cplett.2007.09.021Search in Google Scholar
20. M. T. Baei, A. R. Soltani, A. V. Moradi, E. T. Lemeski, Comput. Theor. Chem. 970 (2011) 30.10.1016/j.comptc.2011.05.021Search in Google Scholar
21. S. Venkatachalam, T. Jacob, Z. Phys. Chem. 221 (2007) 1406.10.1524/zpch.2007.221.9-10.1393Search in Google Scholar
22. J. Zhang, K. P. Loh, J. Zheng, M. B. Sullivan, P. Wu, Phys. Rev. B 75 (2007) 245301.10.1103/PhysRevB.75.245301Search in Google Scholar
23. R. Wang, D. Zhang, Aust. J. Chem. 61 (2008) 941.10.1071/CH08226Search in Google Scholar
24. R. J. Baierle, T. M. Schmidt, A. Fazzio, Solid State Commun. 142 (2007) 49.10.1016/j.ssc.2007.01.036Search in Google Scholar
25. R. J. Baierle, P. Piquini, T. M. Schmidt, A. Fazzio, J. Phys. Chem. B 110 (2006) 21184.10.1021/jp061587sSearch in Google Scholar PubMed
26. Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, J. Mol. Struct. (Theochem) 948 (2010) 83.10.1016/j.theochem.2010.02.024Search in Google Scholar
27. X. Wu, J. L. Yang, X. C. Zeng, J. Chem. Phys. 125 (2006) 044704.10.1063/1.2210933Search in Google Scholar PubMed
28. X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, L. Jiang, J. Mol. Struct. (Theochem) 901 (2009) 103.10.1016/j.theochem.2009.01.019Search in Google Scholar
29. E. Durgun, Y. R. Jang, S. Ciraci, Phys. Rev. B 76 (2007) 073413.10.1103/PhysRevB.76.073413Search in Google Scholar
30. R. Geetha, V. Gayathri, Curr. Nanosci. 6 (2010) 131.10.2174/157341310790945731Search in Google Scholar
31. X. Wu, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 124 (2006) 054706.10.1063/1.2162897Search in Google Scholar PubMed
32. J. X. Zhao, Y. H. Ding, J. Chem. Phys. 131 (2009) 014706.10.1063/1.3167409Search in Google Scholar PubMed
33. W. An, X. Wu, J. L. Yang, X. C. Zeng, J. Phys. Chem. C 111 (2007) 14105.10.1021/jp072443wSearch in Google Scholar
34. R. Q. Wu, M. Yang, Y. H. Lu, Y. P. Feng, Z. G. Huang, Q. Y. Wu, J. Phys. Chem. C 112 (2008) 15985.10.1021/jp804727cSearch in Google Scholar
35. G. Gao, S. H. Park, H. S. Kang, Chem. Phys. 355 (2009) 50.10.1016/j.chemphys.2008.10.049Search in Google Scholar
36. G. Gao, H. S. Kang, J. Chem. Theory Comput. 4 (2008) 1690.10.1021/ct800273cSearch in Google Scholar PubMed
37. R. L. Liang, Y. Zhang, J. M. Zhang, Appl. Surf. Sci. 257 (2010) 282.10.1016/j.apsusc.2010.06.087Search in Google Scholar
38. M. D. Ganji, B. Ahaz, Commun. Theor. Phys. 53 (2010) 742.10.1088/0253-6102/53/4/29Search in Google Scholar
39. W. An, X. Wu, X. C. Zeng, J. Phys. Chem. C 112 (2008) 5747.10.1021/jp711105dSearch in Google Scholar
40. F. Lin, G. Zhou, Z. Li, J. Li, J. Wu, W. Duan, Chem. Phys. Lett. 475 (2009) 82.10.1016/j.cplett.2009.05.018Search in Google Scholar
41. M. D. Ganji, Phys. Lett. A 372 (2008) 3277.10.1016/j.physleta.2008.01.032Search in Google Scholar
42. M. Yang, Y. Zhang, S. Huang, H. Liu, P. Wang, H. Tian, Appl. Surf. Sci. 258 (2011) 1429.10.1016/j.apsusc.2011.09.097Search in Google Scholar
43. A. Rubio, J. L. Corkill, M. L. Cohen, Phys. Rev. B 49 (1994) 5081.10.1103/PhysRevB.49.5081Search in Google Scholar PubMed
44. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Science 269 (1995) 966.10.1126/science.269.5226.966Search in Google Scholar PubMed
45. M. Shelef, Chem. Rev. 95 (1995) 209.10.1021/cr00033a008Search in Google Scholar
46. X. M. Li, W. Q. Tian, Q. Dong, X. R. Huang, C. C. Sun, L. Jiang, Comput. Theor. Chem. 964 (2011) 199.10.1016/j.comptc.2010.12.026Search in Google Scholar
47. K. H. He, G. Zheng, G. Chen, M. Wan, G. F. Ji, Physica B 403 (2008) 4213.10.1016/j.physb.2008.09.023Search in Google Scholar
48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT (2009).Search in Google Scholar
49. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Search in Google Scholar PubMed
50. M. S. Khan, A. Srivastava, R. Chaurasiya, M. S. Khan, Chem. Phys. Lett. 636 (2015) 103.10.1016/j.cplett.2015.07.038Search in Google Scholar
51. J. P. Hay, R. W. Wadt, J. Chem. Phys. 82 (1985) 270.10.1063/1.448799Search in Google Scholar
52. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Search in Google Scholar
53. S. S. Li, Semiconductor Physical Electronics, 2nd edn. Springer, Heidelberg (2006).10.1007/0-387-37766-2Search in Google Scholar
54. S. A. Aal, Surf. Sci. 644 (2016) 1.10.1016/j.susc.2015.08.024Search in Google Scholar
55. R. J. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSearch in Google Scholar
56. T. Koopmans, Physica 1 (1933) 104.10.1016/S0031-8914(34)90011-2Search in Google Scholar
57. J. Beheshtian, A. A. Peyghan, Z. Bagheri, Sens. Actuators B: Chem. 171–172 (2012) 846.10.1016/j.snb.2012.05.082Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview
- Optimal co-catalytic effect of NiFe2O4/ZnO nanocomposites toward enhanced photodegradation for dye MB
- Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics
- Preparation and Chemical Modification of Rice Husk Char for the Removal of a Toxic Dye (Orange G) from Aqueous Medium
- Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate
- Furosemide–Cetyltrimethylammonium Bromide Interactions in Aqueous Dimethylsulfoxide Solutions: Physico–Chemical Studies
- XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations
- Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs
Articles in the same Issue
- Frontmatter
- Review Article
- Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview
- Optimal co-catalytic effect of NiFe2O4/ZnO nanocomposites toward enhanced photodegradation for dye MB
- Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics
- Preparation and Chemical Modification of Rice Husk Char for the Removal of a Toxic Dye (Orange G) from Aqueous Medium
- Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate
- Furosemide–Cetyltrimethylammonium Bromide Interactions in Aqueous Dimethylsulfoxide Solutions: Physico–Chemical Studies
- XH3 (X=P or N) Adsorption on Pristine, Pt-Doped and Vacancy-Defective (8,8) Boron Nitride Nanotubes: DFT Calculations
- Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs