Home Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
Article
Licensed
Unlicensed Requires Authentication

Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals

  • Frauke Gerdes , Eugen Klein , Sascha Kull , Mohammad Mehdi Ramin Moayed , Rostyslav Lesyuk and Christian Klinke EMAIL logo
Published/Copyright: March 28, 2018

Abstract

In this review, we highlight the role of halogenated compounds in the colloidal synthesis of nanostructured semiconductors. Halogen-containing metallic salts used as precursors and halogenated hydrocarbons used as ligands allow stabilizing different shapes and crystal phases, and enable the formation of colloidal systems with different dimensionality. We summarize recent reports on the tremendous influence of these compounds on the physical properties of nanocrystals, like field-effect mobility and solar cell performance and outline main analytical methods for the nanocrystal surface control.


Dedicated to: Alexander Eychmüller on the occasion of his 60th birthday.


Acknowledgements

The authors thank Beatriz H. Juarez for critically reading the manuscript and helpful suggestions. The authors gratefully acknowledge financial support of the European Research Council via the ERC Starting Grant “2D-SYNETRA” (Seventh Framework Program FP7, Project: 304980) and thank the German Research Foundation DFG for financial support in the frame of the Cluster of Excellence “Center of ultrafast imaging CUI”. C.K. thanks the German Research Foundation DFG for financial support in the frame the Heisenberg scholarship KL 1453/9-2. MMRM thanks PIER Helmholtz Graduate School for the financial support.

References

1. C. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.10.1021/ja00072a025Search in Google Scholar

2. O. I. Micic, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, J. Phys. Chem. 99 (1995) 7754.10.1021/j100019a063Search in Google Scholar

3. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.10.1021/jp025541kSearch in Google Scholar

4. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, J. R. Heath, J. Phys. Chem. 100 (1996) 7212.10.1021/jp953719fSearch in Google Scholar

5. M. R. Kim, K. Miszta, M. Povia, R. Brescia, S. Christodoulou, M. Prato, S. Marras, L. Manna, ACS Nano 6 (2012) 11088.10.1021/nn3048846Search in Google Scholar PubMed

6. J. Lim, W. K. Bae, K. U. Park, L. zur Borg, R. Zentel, S. Lee, K. Char, Chem. Mater. 25 (2012) 1443.10.1021/cm3035592Search in Google Scholar

7. M. Saruyama, M. Kanehara, T. Teranishi, J. Am. Chem. Soc. 132 (2010) 3280.10.1021/ja9095285Search in Google Scholar PubMed

8. Y. Zou, D. Li, D. Yang, Nanoscale Res. Lett. 6 (2011) 374.10.1186/1556-276X-6-374Search in Google Scholar PubMed PubMed Central

9. M. Meyns, F. Iacono, C. Palencia, J. Geweke, M. D. Coderch, U. E. Fittschen, J. M. Gallego, R. Otero, B. H. Juárez, C. Klinke, Chem. Mater. 26 (2014) 1813.10.1021/cm4037082Search in Google Scholar

10. C. Palencia, K. Lauwaet, L. de La Cueva, M. Acebrón, J. J. Conde, M. Meyns, C. Klinke, J. M. Gallego, R. Otero, B. H. Juárez, Nanoscale 6 (2014) 6812.10.1039/C4NR00431KSearch in Google Scholar

11. B. H. Juarez, Z. Phys. Chem. 229 (2015) 119.10.1515/zpch-2014-0594Search in Google Scholar

12. J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 125 (2003) 11100.10.1021/ja0357902Search in Google Scholar PubMed

13. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, Nat. Mater. 10 (2011) 765.10.1038/nmat3118Search in Google Scholar PubMed

14. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, Nat. Nanotechnol. 7 (2012) 577.10.1038/nnano.2012.127Search in Google Scholar PubMed

15. W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, J. M. Pietryga, J. Am. Chem. Soc. 134 (2012) 20160.10.1021/ja309783vSearch in Google Scholar PubMed

16. M. Ibáñez, R. J. Korkosz, Z. Luo, P. Riba, D. Cadavid, S. Ortega, A. Cabot, M. G. Kanatzidis, J. Am. Chem. Soc. 137 (2015) 4046.10.1021/jacs.5b00091Search in Google Scholar PubMed

17. K. T. Yong, Y. Sahoo, M. T. Swihart, P. N. Prasad, J. Phys. Chem. C 111 (2007) 2447.10.1021/jp066392zSearch in Google Scholar

18. S.-W. Hsu, C. Ngo, W. Bryks, A. R. Tao, Chem. Mater. 27 (2015) 4957.10.1021/acs.chemmater.5b01223Search in Google Scholar

19. J. Owen, Science 347 (2015) 615.10.1126/science.1259924Search in Google Scholar PubMed

20. M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 15 (2016) 141.10.1038/nmat4526Search in Google Scholar PubMed

21. J. De Roo, K. De Keukeleere, Z. Hens, I. Van Driessche, Dalton Trans. 45 (2016) 13277.10.1039/C6DT02410FSearch in Google Scholar

22. M. Sluydts, K. De Nolf, V. Van Speybroeck, S. Cottenier, Z. Hens, ACS Nano 10 (2016) 1462.10.1021/acsnano.5b06965Search in Google Scholar PubMed

23. R. G. Pearson, The HSAB principle. Chemical Hardness, Wiley-VCH Verlag GmbH, Weinheim (2005), pp. 1–27.Search in Google Scholar

24. W. van der Stam, Q. A. Akkerman, X. Ke, M. A. van Huis, S. Bals, C. de Mello Donega, Chem. Mater. 27 (2014) 283.10.1021/cm503929qSearch in Google Scholar

25. C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller, Science 329 (2010) 550.10.1126/science.1188035Search in Google Scholar PubMed

26. B. H. Juarez, M. Meyns, A. Chanaewa, Y. Cai, C. Klinke, H. Weller, J. Am. Chem. Soc. 130 (2008) 15282.10.1021/ja805662hSearch in Google Scholar PubMed

27. T. Bielewicz, M. M. Ramin Moayed, V. Lebedeva, C. Strelow, A. Rieckmann, C. Klinke, Chem. Mater. 27 (2015) 8248.10.1021/acs.chemmater.5b03088Search in Google Scholar

28. G. B. Bhandari, K. Subedi, Y. He, Z. Jiang, M. Leopold, N. Reilly, H. P. Lu, A. T. Zayak, L. Sun, Chem. Mater. 26 (2014) 5433.10.1021/cm502524zSearch in Google Scholar

29. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. Von Freymann, G. A. Ozin, J. Phys. Chem. B 110 (2006) 671.10.1021/jp0563585Search in Google Scholar PubMed

30. J. S. Son, X. D. Wen, J. Joo, J. Chae, S. I. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S. H. Choi, Angew. Chem. 121 (2009) 6993.10.1002/ange.200902791Search in Google Scholar

31. S. Ithurria, G. Bousquet, B. Dubertret, J. Am. Chem. Soc. 133 (2011) 3070.10.1021/ja110046dSearch in Google Scholar PubMed

32. J. H. Yu, J. Joo, H. M. Park, S. I. Baik, Y. W. Kim, S. C. Kim, T. Hyeon, J. Am. Chem. Soc. 127 (2005) 5662.10.1021/ja044593fSearch in Google Scholar PubMed

33. J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, Adv. Mater. 16 (2004) 436.10.1002/adma.200306251Search in Google Scholar

34. K.-S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, J. Am. Chem. Soc. 127 (2005) 7140.10.1021/ja050107sSearch in Google Scholar PubMed

35. G. a. Tai, J. Zhou, W. Guo, Nanotechnology 21 (2010) 175601.10.1088/0957-4484/21/17/175601Search in Google Scholar PubMed

36. C. Ricolleau, L. Audinet, M. Gandais, T. Gacoin, Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 9 (1999) 565.10.1007/PL00010951Search in Google Scholar

37. V. Singh, P. K. Sharma, P. Chauhan, Mater. Chem. Phys. 121 (2010) 202.10.1016/j.matchemphys.2010.01.019Search in Google Scholar

38. F. Gerdes, C. Navío, B. H. Juárez, C. Klinke, Nano Lett. 17 (2017) 4165.10.1021/acs.nanolett.7b00937Search in Google Scholar PubMed

39. J. Y. Woo, J. H. Ko, J. H. Song, K. Kim, H. Choi, Y. H. Kim, D. C. Lee, S. Jeong, J. Am. Chem. Soc. 136 (2014) 8883.10.1021/ja503957rSearch in Google Scholar PubMed

40. J. Zhang, J. Gao, E. M. Miller, J. M. Luther, M. C. Beard, ACS Nano 8 (2014) 614.10.1021/nn405236kSearch in Google Scholar PubMed

41. A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, E. Lifshitz, Chem. Mater. 28 (2016) 6409.10.1021/acs.chemmater.6b02917Search in Google Scholar

42. Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, Nat. Mater. 13 (2014) 822.10.1038/nmat4007Search in Google Scholar PubMed

43. A. Stavrinadis, G. Konstantatos, ChemPhysChem 17 (2016) 632.10.1002/cphc.201500834Search in Google Scholar PubMed

44. M. Shim, P. Guyot-Sionnest, Nature 407 (2000) 981.10.1038/35039577Search in Google Scholar PubMed

45. K. Kim, D. Yoo, H. Choi, S. Tamang, J. H. Ko, S. Kim, Y. H. Kim, S. Jeong, Angew. Chem. Int. Ed. 55 (2016) 3714.10.1002/anie.201600289Search in Google Scholar PubMed

46. L. Yuan, R. Patterson, W. Cao, Z. Zhang, Z. Zhang, J. A. Stride, P. Reece, G. Conibeer, S. Huang, RSC Adv. 5 (2015) 68579.10.1039/C5RA13499DSearch in Google Scholar

47. D. V. Talapin, C. B. Murray, Science 310 (2005) 86.10.1126/science.1116703Search in Google Scholar PubMed

48. D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, E. H. Sargent, Adv. Mater. 24 (2012) 6181.10.1002/adma.201202825Search in Google Scholar PubMed

49. D. M. Balazs, M. I. Nugraha, S. Z. Bisri, M. Sytnyk, W. Heiss, M. A. Loi, Appl. Phys. Lett. 104 (2014) 112104.10.1063/1.4869216Search in Google Scholar

50. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3 (2003) 149.10.1021/nl025875lSearch in Google Scholar

51. J. Chang, S. Mao, Y. Zhang, S. Cui, D. A. Steeber, J. Chen, Biosens. Bioelectron. 42 (2013) 186.10.1016/j.bios.2012.10.041Search in Google Scholar PubMed

52. E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T. A. Papadopoulos, J. Briscoe, L. C. Palilis, S. Kennou, E. Gogolides, J. Mater. Chem. A 4 (2016) 11844.10.1039/C6TA03594ASearch in Google Scholar

53. S. R. Kandel, S. Chiluwal, Z. Jiang, Y. Tang, P. J. Roland, K. Subedi, D. M. Dimick, P. Moroz, M. Zamkov, R. Ellingson, J. Hu, Phys. Status Solidi Rapid Res. Lett. 10 (2016) 833.10.1002/pssr.201600278Search in Google Scholar

Received: 2018-02-20
Accepted: 2018-03-01
Published Online: 2018-03-28
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1164/html
Scroll to top button