Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
Abstract
The 50 nm thickness Zn-doped polyvinyl alcohol (PVA) was deposited on n-4H-SiC semiconductor as interlayer by electro-spinning method and so Au/Zn-doped PVA/n-4H-SiC metal-polymer-semiconductor (MPS) structure were fabricated. The real and imaginary parts of the complex dielectric constant (ε′, ε′′), loss-tangent (tan δ), the real and imaginary parts of the complex electric modulus (M′, M′′) and ac electrical conductivity (σac) behavior of this structure were examined using impedance spectroscopy method in a wide range of frequency (1 kHz–400 kHz) and voltage (−1 V)–(+6 V) at room temperature. The values of ε′, ε′′, tan δ, M′, M′′ and σac are determined sensitive to the frequency and voltage in depletion and accumulation regions. The values of ε′ and ε′′ decrease with increasing frequency while the values of M′ and σac increase. The peak behavior in the tan δ and M′′ vs. frequency curves was attributed to the dielectric relaxation processes and surface states (Nss). The plots of ln (σac) vs. ln (f) at enough high forward bias voltage (+6 V) have three linear regions with different slopes which correspond to low, intermediate and high frequencies, respectively. The dc conductivity is effective at low frequencies whereas the ac conductivity effective at high frequencies. According to experimental results, the surface/dipole polarizations can occur more easily occur at low frequencies and the majority of Nss between Zn-doped PVA and n-4H-SiC contributes to the deviation of dielectric behavior of this structure.
Acknowledgement
The authors wish to thank The Management Unit of Scientific Research Projects of Süleyman Demirel University (SDUBAP) for contributions. This study was supported by SDUBAP under 4611-D2-16.
References
1. V. Rajagopal Reddy, A. Umapathi, L. Dasaradha Rao, Curr. Appl. Phys. 13 (2013) 1604.10.1016/j.cap.2013.06.001Search in Google Scholar
2. A. A. Hendi, R. H. Al Orainy, Synth. Met. 193 (2014) 31.10.1016/j.synthmet.2014.03.007Search in Google Scholar
3. H. Tecimer, H. Uslu, Z. A. Alahmed, F. Yakuphanoğlu, Ş. Altındal, Compos. Part B Eng. 57 (2014) 25.10.1016/j.compositesb.2013.09.040Search in Google Scholar
4. S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. 133 (2016) 33.10.1002/app.43827Search in Google Scholar
5. I. M. Afandiyeva, M. M. Bülbül, Ş. Altındal, S. Bengi, Microelectron. Eng. 93 (2012) 50.10.1016/j.mee.2011.05.041Search in Google Scholar
6. B.-G. Kim, S. M. Cho, T.-Y. Kim, H. M. Jang, Phys. Rev. Lett. 86 (2001) 3404.10.1103/PhysRevLett.86.3404Search in Google Scholar
7. E. E. Tanrıkulu, D. E. Yıldız, A. Günen, Ş. Altındal, Phys. Scr. 90 (2015) 95801.10.1088/0031-8949/90/9/095801Search in Google Scholar
8. H. G. Çetinkaya, D. E. Yıldız, Ş. Altındal, Int. J. Mod. Phys. B 29 (2015) 1450237.10.1142/S0217979214502373Search in Google Scholar
9. V. Rajagopal Reddy, Indian J. Phys. 89 (2015) 463.10.1007/s12648-014-0602-7Search in Google Scholar
10. C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14 (2002) 99.10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9Search in Google Scholar
11. İ. Taşçıoğlu, Ö. Tüzün Özmen, H. M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater. 46 (2017) 2379.10.1007/s11664-017-5294-2Search in Google Scholar
12. M. İlhan, J. Mater. Electron. Device 1 (2017) 15.Search in Google Scholar
13. S. Altındal, J. Mater. Electron. Device 1 (2017) 42.Search in Google Scholar
14. H. Özerli, İ. Karteri, A. Bekereci, Ş. Karataş, J. Mater. Electron. Device 1 (2017) 83.Search in Google Scholar
15. G. V. Kumar, R. Chandramani, Acta Phys. Pol. A 117 (2010) 917.10.12693/APhysPolA.117.917Search in Google Scholar
16. U. Aydemir, I. Taşçıoğlulu, Ş. Altindal, İ. Uslu, Mater. Sci. Semicond. Process. 16 (2013) 1865.10.1016/j.mssp.2013.07.013Search in Google Scholar
17. Y. Azizian-Kalandaragh, U. Aydemir, Ş. Altindal, J. Electron. Mater. 43 (2014) 1226.10.1007/s11664-014-2998-4Search in Google Scholar
18. D. E. Yıldız, D. H. Apaydın, L. Toppare, A. Cirpan, J. Appl. Polym. Sci. 134 (2017) 1.10.1002/app.44817Search in Google Scholar
19. S. Demirezen, Appl. Phys. A 112 (2013) 827.10.1007/s00339-013-7605-7Search in Google Scholar
20. A. F. Özdemir, Z. Kotan, D. A. Aldemir, S. Altındal, Eur. Phys. J. Appl. Phys. 46 (2009) 20402.10.1051/epjap/2009035Search in Google Scholar
21. V. R. Reddy, Thin Solid Films 556 (2014) 300.10.1016/j.tsf.2014.01.036Search in Google Scholar
22. Ç. Bilkan, S. Zeyrek, S. E. San, Ş. Altindal, Mater. Sci. Semicond. Process. 32 (2015) 137.10.1016/j.mssp.2014.12.071Search in Google Scholar
23. T. Tunç, İ. Dökme, Ş. Altındal, İ. Uslu, J. Appl. Polym. Sci. 122 (2011) 265.10.1002/app.34029Search in Google Scholar
24. R. K. Gupta, K. Ghosh, P. K. Kahol, Curr. Appl. Phys. 9 (2009) 933.10.1016/j.cap.2008.09.007Search in Google Scholar
25. H. E. Lapa, A. Kökce, M. Al-Dharob, İ. Orak, A. F. Özdemir, Ş. Altındal, Eur. Phys. J. Appl. Phys. 80 (2017) 10101.10.1051/epjap/2017170147Search in Google Scholar
26. H. E. Lapa, A. Kökce, A. F. Özdemir, İ. Uslu, Ş. Altındal, Bull. Mater. Sci. 41 (2018) 82.10.1007/s12034-018-1602-6Search in Google Scholar
27. B. C. Sutar, R. N. P. Choudhary, P. R. Das, Ceram. Int. 40 (2014) 7791.10.1016/j.ceramint.2013.12.122Search in Google Scholar
28. A. Chelkowski, Dielectrics Physics, PWN/Elsevier, Amsterdam (1980).Search in Google Scholar
29. A. A. Sattar, S. A. Rahman, Phys. Status Solidi Appl. Res. 200 (2003) 415.10.1002/pssa.200306663Search in Google Scholar
30. P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glas. 13 (1972) 171.Search in Google Scholar
31. P. Dutta, S. Biswas, S. De Kumar, Mater. Res. Bull. 37 (2002) 193.10.1016/S0025-5408(01)00813-3Search in Google Scholar
32. Y. Şafak-Asar, T. Asar, Ş. Altındal, S. Özçelik, J. Alloys Compd. 628 (2015) 442.10.1016/j.jallcom.2014.12.170Search in Google Scholar
33. P. Chattopadhyay, B. RayChaudhuri, Solid. State. Electron. 36 (1993) 605.10.1016/0038-1101(93)90272-RSearch in Google Scholar
34. N. A. Khan, M. Mumtaz, A. A. Khurram, J. Appl. Phys. 104 (2008) 33916.10.1063/1.2967823Search in Google Scholar
35. J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, London (1873).Search in Google Scholar
36. K. W. Wagner, Ann. Der Phys. 40 (1913) 817.10.1002/andp.19133450502Search in Google Scholar
37. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49 (1994) 7868.10.1103/PhysRevB.49.7868Search in Google Scholar
38. V. V Daniel, Dielectric Relaxation, Academic, London (1967).Search in Google Scholar
39. G. Yellaiah, T. Shekharam, K. Hadasa, M. Nagabhushanam, J. Alloys Compd. 609 (2014) 192.10.1016/j.jallcom.2014.04.124Search in Google Scholar
40. I. Chaabane, F. Hlel, K. Guidara, J. Alloys Compd. 461 (2008) 495.10.1016/j.jallcom.2007.07.031Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity
Articles in the same Issue
- Frontmatter
- The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode
- Mechanistic Study on Surface Tension of Binary and Ternary Mixtures Containing Choline Chloride, Ethylene Glycol and Water (Components of Aqueous Solutions of a Deep Eutectic Solvent, Ethaline)
- Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations
- The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques
- Adsorption of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solution Using Carbonized Chest Nut as Low Cost Adsorbent: Kinetic and Thermodynamic
- The Kinetics and Equilibrium Thermodynamics Study on the Removal of Direct Blue and Titan Yellow Dyes from Aqueous Media by Modified Rice Husk Char
- Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
- Finding Solvent for Polyamide 11 Using a Computer Software
- Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity