Startseite Variable van der Waals Radii Derived From a Hybrid Gaussian Charge Distribution Model for Continuum-Solvent Electrostatic Calculations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Variable van der Waals Radii Derived From a Hybrid Gaussian Charge Distribution Model for Continuum-Solvent Electrostatic Calculations

  • Renlong Ye , Xuemei Nie , Chung F. Wong , Xuedong Gong , Yan A. Wang , Thomas Heine und Baojing Zhou EMAIL logo
Veröffentlicht/Copyright: 26. Februar 2016

Abstract

We introduce a hybrid Gaussian charge distribution model (HGM) that partitions the molecular electron density into overlapping spherical atomic domains. The semi-empirical HGM consists of atom-centered spherical Gaussian functions and discrete point charges, which are optimized to reproduce the electrostatic potential on the molecular surface as well as the number of electrons in atom-centered and certain off-atom-centered spherical regions as closely as possible. In contrast, our previous Gaussian charge distribution model [J. Chem. Phys. 129, 014509 (2008)] contained only spherical Gaussian functions and was not required to reproduce the number of electrons in off-atom-centered regions. Variable van der Waals (vdW) radii fluctuating around the Bondi radii are derived from the HGM based on the isodensity contour concept and further employed to define the molecular cavity in our quantum mechanical/Poisson–Boltzmann/surface area model as well as the polarizable continuum model. The variable vdW radii produce more accurate solvation free energies for 31 neutral molecules than the Bondi radii for both continuum solvent models (CSM) consistently. Moreover, for H atoms, the linear dependence of the atomic radii on the atomic partial charges is identified.


Supplementary material

the online version of this article (DOI: 10.1515/zpch-2015-0746) provides supplementary material for authorized users.


Acknowledgement

BZ gratefully acknowledges the financial support from “the Fundamental Research Funds for the Central Universities”, No. 30915011314. CFW acknowledges the support from a University of Missouri Research Board Award. We appreciate the useful comments from Dr. Norman Hamer to improve the manuscript.

Received: 2015-12-9
Accepted: 2016-2-1
Published Online: 2016-2-26
Published in Print: 2016-5-28

©2016 Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Michael Springborg
  4. Fourier Space Uncoupled Hartree–Fock Polarizabilities of One-Dimensionally Periodic Systems. Polyethylene and Polysilane Revisited
  5. Construction of Constrained Dipole Oscillator Strength Distributions
  6. Incremental DF-LCCSD(T) Calculations for a Water Molecule Inside and Outside Armchair Carbon Nanotubes
  7. An Efficient Unrestricted PCM-Elongation Method for Large High-Spin Polymer/Dendrimer Systems
  8. Variable van der Waals Radii Derived From a Hybrid Gaussian Charge Distribution Model for Continuum-Solvent Electrostatic Calculations
  9. Natural Extension of Hartree–Fock Through Extremal 1-Fermion Information: Overview and Application to the Lithium Atom
  10. Direct Piezoelectric Tensor of 3D Periodic Systems through a Coupled Perturbed Hartree–Fock/Kohn–Sham Method
  11. Intensive Atomization Energy: Re-Thinking a Metric for Electronic Structure Theory Methods
  12. The VES Hypothesis and Protein Conformational Changes
  13. Understanding the Electronic Structure of Graphene Quantum Dot-Fullerene Nanohybrids for Photovoltaic Applications
  14. A First-Principles Study of Metal-Decorated Graphene Nanoribbons for Hydrogen Storage
  15. Defect Effects on the Interfacial Interactions between a (5, 5) Carbon Nanotube and an Al (111) Surface
  16. Structural Insight into Self Assembly of Sophorolipids: A Molecular Dynamics Simulation Study
  17. The Role of Mutations at the Side Door on the Thermal Stability and Structural Flexibility of the pnbCE Enzyme
  18. Electric (Hyper) Polarizability of the Hypofluorous Acid (HOF) from High-Level ab initio Calculations with Especially Designed Purpose-Oriented Basis Sets
  19. Conformational and Vibrational Analysis of 2-, 3- and 4-Pyridinecarbonyl Chloride Using DFT
  20. Spectral Properties of α and β L Rhamno-Indigo Molecules and Activities Prediction Through NBO Analysis. A DFT Study
  21. Solid State Structure Prediction Through DFT Calculations and 13C NMR Measurements: Case Study of Spiro-2,4-dithiohydantoins
  22. Eu2+-Containing Luminescent Perovskite-Type Hydrides Studied by Electron Paramagnetic Resonance
  23. Mn Adsorption on the GaAs(111)–(2×2)B Surface: First Principles Studies
  24. Charge and Compositional Effects on the 2D–3D Transition in Octameric AgAu Clusters
  25. Diversity Characterization of Binary Clusters by Means of a Generalized Distance
  26. First Principle Investigation of (Bi2O3)n Clusters With n = 6 − 9
  27. The Role of Aluminum Substitution on the Stability of Substituted Polyhedral Oligomeric Silsesquioxanes
  28. Ab-Initio Investigation of Nowotny Chimney Ladder Silicide Os2Si3 Using the Modified BJ Potential
  29. Surface Plasmon Assisted Two-Photon Ionization of Noble and Alkali Metal Clusters
  30. Temperature Dependence of Stability of Copper Clusters
  31. Detecting and Quantifying Geometric Features in Large Series of Cluster Structures
Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2015-0746/html
Button zum nach oben scrollen