Abstract
On the basis of the first principle density functional theory (DFT) the stability, the electronic structure and the hydrogen adsorption of a metal functionalized monolayer of AGNR-O (armchair graphene nanoribbons) have been studied. The AGNR-O and AGNR-OH structures were decorated with different metal atoms, M = Ca, Mg, Ti. Ca and Mg as decorating metals were found to be superior to the transition metals due to small cohesive energies (no clustering) and the capability of binding multiple hydrogen molecules. The binding of up to four hydrogen molecules to the alkaline earth and transition metal atoms has been investigated. For the alkaline earth metal atoms the binding energy per H2 molecule is almost independent from the number of adsorbed H2 molecules. An increase in the adsorption energy by a factor of six or even more, from 0.07 eV/H2 for “naked” nanoribbons to 0.35 eV/H2 or to 0.69 eV/H2 for AGNR-O structures has been observed. This different hydrogen binding energy is due to different construction of the AGNR-O edges. The AGNR edge terminations influence the binding energies of the M/AGNR and consequently the H2 binding energies on M/AGNR. If the binding energy between the metal atoms and AGNR is not very strong, then H2 could bind much stronger to the M/AGNR. This could be a possible route to 10 wt % hydrogen storage capacity.
Acknowledgement
This work was financially supported by the European Union via Graphene Flagship grant 604391. The simulations were performed by using the HPC resources on the Juropa supercomputer at the Forschungszentrum Jülich (Germany). One of the authors (D. C. T) would like to thank for useful discussions to Kai Trepte.
©2016 Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Congratulations to Michael Springborg
- Fourier Space Uncoupled Hartree–Fock Polarizabilities of One-Dimensionally Periodic Systems. Polyethylene and Polysilane Revisited
- Construction of Constrained Dipole Oscillator Strength Distributions
- Incremental DF-LCCSD(T) Calculations for a Water Molecule Inside and Outside Armchair Carbon Nanotubes
- An Efficient Unrestricted PCM-Elongation Method for Large High-Spin Polymer/Dendrimer Systems
- Variable van der Waals Radii Derived From a Hybrid Gaussian Charge Distribution Model for Continuum-Solvent Electrostatic Calculations
- Natural Extension of Hartree–Fock Through Extremal 1-Fermion Information: Overview and Application to the Lithium Atom
- Direct Piezoelectric Tensor of 3D Periodic Systems through a Coupled Perturbed Hartree–Fock/Kohn–Sham Method
- Intensive Atomization Energy: Re-Thinking a Metric for Electronic Structure Theory Methods
- The VES Hypothesis and Protein Conformational Changes
- Understanding the Electronic Structure of Graphene Quantum Dot-Fullerene Nanohybrids for Photovoltaic Applications
- A First-Principles Study of Metal-Decorated Graphene Nanoribbons for Hydrogen Storage
- Defect Effects on the Interfacial Interactions between a (5, 5) Carbon Nanotube and an Al (111) Surface
- Structural Insight into Self Assembly of Sophorolipids: A Molecular Dynamics Simulation Study
- The Role of Mutations at the Side Door on the Thermal Stability and Structural Flexibility of the pnbCE Enzyme
- Electric (Hyper) Polarizability of the Hypofluorous Acid (HOF) from High-Level ab initio Calculations with Especially Designed Purpose-Oriented Basis Sets
- Conformational and Vibrational Analysis of 2-, 3- and 4-Pyridinecarbonyl Chloride Using DFT
- Spectral Properties of α and β L Rhamno-Indigo Molecules and Activities Prediction Through NBO Analysis. A DFT Study
- Solid State Structure Prediction Through DFT Calculations and 13C NMR Measurements: Case Study of Spiro-2,4-dithiohydantoins
- Eu2+-Containing Luminescent Perovskite-Type Hydrides Studied by Electron Paramagnetic Resonance
- Mn Adsorption on the GaAs(111)–(2×2)B Surface: First Principles Studies
- Charge and Compositional Effects on the 2D–3D Transition in Octameric AgAu Clusters
- Diversity Characterization of Binary Clusters by Means of a Generalized Distance
- First Principle Investigation of (Bi2O3)n Clusters With n = 6 − 9
- The Role of Aluminum Substitution on the Stability of Substituted Polyhedral Oligomeric Silsesquioxanes
- Ab-Initio Investigation of Nowotny Chimney Ladder Silicide Os2Si3 Using the Modified BJ Potential
- Surface Plasmon Assisted Two-Photon Ionization of Noble and Alkali Metal Clusters
- Temperature Dependence of Stability of Copper Clusters
- Detecting and Quantifying Geometric Features in Large Series of Cluster Structures
Articles in the same Issue
- Frontmatter
- Preface
- Congratulations to Michael Springborg
- Fourier Space Uncoupled Hartree–Fock Polarizabilities of One-Dimensionally Periodic Systems. Polyethylene and Polysilane Revisited
- Construction of Constrained Dipole Oscillator Strength Distributions
- Incremental DF-LCCSD(T) Calculations for a Water Molecule Inside and Outside Armchair Carbon Nanotubes
- An Efficient Unrestricted PCM-Elongation Method for Large High-Spin Polymer/Dendrimer Systems
- Variable van der Waals Radii Derived From a Hybrid Gaussian Charge Distribution Model for Continuum-Solvent Electrostatic Calculations
- Natural Extension of Hartree–Fock Through Extremal 1-Fermion Information: Overview and Application to the Lithium Atom
- Direct Piezoelectric Tensor of 3D Periodic Systems through a Coupled Perturbed Hartree–Fock/Kohn–Sham Method
- Intensive Atomization Energy: Re-Thinking a Metric for Electronic Structure Theory Methods
- The VES Hypothesis and Protein Conformational Changes
- Understanding the Electronic Structure of Graphene Quantum Dot-Fullerene Nanohybrids for Photovoltaic Applications
- A First-Principles Study of Metal-Decorated Graphene Nanoribbons for Hydrogen Storage
- Defect Effects on the Interfacial Interactions between a (5, 5) Carbon Nanotube and an Al (111) Surface
- Structural Insight into Self Assembly of Sophorolipids: A Molecular Dynamics Simulation Study
- The Role of Mutations at the Side Door on the Thermal Stability and Structural Flexibility of the pnbCE Enzyme
- Electric (Hyper) Polarizability of the Hypofluorous Acid (HOF) from High-Level ab initio Calculations with Especially Designed Purpose-Oriented Basis Sets
- Conformational and Vibrational Analysis of 2-, 3- and 4-Pyridinecarbonyl Chloride Using DFT
- Spectral Properties of α and β L Rhamno-Indigo Molecules and Activities Prediction Through NBO Analysis. A DFT Study
- Solid State Structure Prediction Through DFT Calculations and 13C NMR Measurements: Case Study of Spiro-2,4-dithiohydantoins
- Eu2+-Containing Luminescent Perovskite-Type Hydrides Studied by Electron Paramagnetic Resonance
- Mn Adsorption on the GaAs(111)–(2×2)B Surface: First Principles Studies
- Charge and Compositional Effects on the 2D–3D Transition in Octameric AgAu Clusters
- Diversity Characterization of Binary Clusters by Means of a Generalized Distance
- First Principle Investigation of (Bi2O3)n Clusters With n = 6 − 9
- The Role of Aluminum Substitution on the Stability of Substituted Polyhedral Oligomeric Silsesquioxanes
- Ab-Initio Investigation of Nowotny Chimney Ladder Silicide Os2Si3 Using the Modified BJ Potential
- Surface Plasmon Assisted Two-Photon Ionization of Noble and Alkali Metal Clusters
- Temperature Dependence of Stability of Copper Clusters
- Detecting and Quantifying Geometric Features in Large Series of Cluster Structures