Abstract
The interactions of two fragments of the human antimicrobial LL-37 (LL-32 and LL-20) with lipid monolayers at the soft liquid/air interface have been characterized. To model the interaction with mammalian cell membranes, lipid monolayers composed of the zwitterionic DPPC and DOPC were used. To investigate the interaction with bacterial cell membranes, lipid monolayers of anionic DPPG and POPG were used. DPPC and DPPG exhibit a first-order phase transition from the disordered liquid to the ordered condensed state, whereas POPG and DOPC monolayers are in the fluid disordered state at all surface pressures studied. Therefore, the influence of the monolayer phase state on peptide-lipid interactions can be studied. To obtain insight into the peptide structure and their influence on phospholipid membranes, film balance measurements were coupled with surface sensitive Infrared Reflection-Absorption Spectroscopy (IRRAS). The results were compared to CD measurements in bulk.
LL-32 is more surface active and can better intercalate into lipid monolayers than LL-20. Even though LL-32 has no cell-selectivity, our results show how the peptide interacts differently with zwitterionic compared to anionic membrane models. The interaction with DPPC monolayers is based on simple intercalation of the peptides between the lipid molecules. However, the peptides bind in a two-step process to DPPG monolayers, which results in a fluidization of the lipid film. This can be related to a membrane thinning.
Acknowledgement
We thank Prof. Thomas Gutsmann (Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Priority Area Infections, Biophysics) for providing the peptide fragments and helpful discussions.
©2014 Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Gerhard Findenegg: A Scientific Life in Soft Matter at Interfaces
- Nanoparticles via Oil-in-Water Microemulsions: a Solvent-Reduced, Energy-Efficient Approach
- Formation of Anisometric Fumed Silica Supraparticles – Mechanism and Application Potential
- Multidirectional, Multicomponent Electric Field Driven Assembly of Complex Colloidal Chains
- Polymer Brush/Metal Nanoparticle Hybrids for Optical Sensor Applications: from Self-Assembly to Tailored Functions and Nanoengineering
- Poly-acrylic Acid Brushes and Adsorbed Proteins
- Interactions of Two Fragments of the Human Antimicrobial Peptide LL-37 with Zwitterionic and Anionic Lipid Monolayers
- Depletion Interaction Mediated by fd-Virus: on the Limit of Low Density and Derjaguin Approximation
- Transport Properties of Polyelectrolyte Solutions. Effect of Confinement in Thin Liquid Films
- Relationship Between Pore Structure and Sorption-Induced Deformation in Hierarchical Silica-Based Monoliths
- Ammonia Dissociation on Graphene Oxide: An Ab Initio Density Functional Theory Calculation
- Responsive Microgels at Surfaces and Interfaces
- Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C60 Bilayer Laminates
Articles in the same Issue
- Frontmatter
- Preface
- Gerhard Findenegg: A Scientific Life in Soft Matter at Interfaces
- Nanoparticles via Oil-in-Water Microemulsions: a Solvent-Reduced, Energy-Efficient Approach
- Formation of Anisometric Fumed Silica Supraparticles – Mechanism and Application Potential
- Multidirectional, Multicomponent Electric Field Driven Assembly of Complex Colloidal Chains
- Polymer Brush/Metal Nanoparticle Hybrids for Optical Sensor Applications: from Self-Assembly to Tailored Functions and Nanoengineering
- Poly-acrylic Acid Brushes and Adsorbed Proteins
- Interactions of Two Fragments of the Human Antimicrobial Peptide LL-37 with Zwitterionic and Anionic Lipid Monolayers
- Depletion Interaction Mediated by fd-Virus: on the Limit of Low Density and Derjaguin Approximation
- Transport Properties of Polyelectrolyte Solutions. Effect of Confinement in Thin Liquid Films
- Relationship Between Pore Structure and Sorption-Induced Deformation in Hierarchical Silica-Based Monoliths
- Ammonia Dissociation on Graphene Oxide: An Ab Initio Density Functional Theory Calculation
- Responsive Microgels at Surfaces and Interfaces
- Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C60 Bilayer Laminates