Abstract
Depletion potentials induced by the rod-like fd-virus between colloidal probe spheres and a flat glass wall were measured using total internal reflection microscopy. The objective of this investigation was to determine the limits of the approximations used for the theoretical description of the depletion pair potential. Data were obtained at rod concentrations as high as 15 times their overlap concentration and the size ratio between the rod length and the sphere radius increased up to L/R = 1.76. With this, the basic assumptions for low density approximation and Derjaguin approximation were clearly violated. Nevertheless, we observed good agreement between experimental data and predictions up to the highest size ratio and in rod concentrations of seven times their overlap concentration. Only at higher concentrations and at the lowest size ratio investigated the experimental data deviate significantly from the simple model.
Acknowledgement
The authors acknowledge financial support from the European Commission under the Seventh Framework Program by means of the grant agreement for the Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure (ESMI).
©2014 Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Gerhard Findenegg: A Scientific Life in Soft Matter at Interfaces
- Nanoparticles via Oil-in-Water Microemulsions: a Solvent-Reduced, Energy-Efficient Approach
- Formation of Anisometric Fumed Silica Supraparticles – Mechanism and Application Potential
- Multidirectional, Multicomponent Electric Field Driven Assembly of Complex Colloidal Chains
- Polymer Brush/Metal Nanoparticle Hybrids for Optical Sensor Applications: from Self-Assembly to Tailored Functions and Nanoengineering
- Poly-acrylic Acid Brushes and Adsorbed Proteins
- Interactions of Two Fragments of the Human Antimicrobial Peptide LL-37 with Zwitterionic and Anionic Lipid Monolayers
- Depletion Interaction Mediated by fd-Virus: on the Limit of Low Density and Derjaguin Approximation
- Transport Properties of Polyelectrolyte Solutions. Effect of Confinement in Thin Liquid Films
- Relationship Between Pore Structure and Sorption-Induced Deformation in Hierarchical Silica-Based Monoliths
- Ammonia Dissociation on Graphene Oxide: An Ab Initio Density Functional Theory Calculation
- Responsive Microgels at Surfaces and Interfaces
- Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C60 Bilayer Laminates
Articles in the same Issue
- Frontmatter
- Preface
- Gerhard Findenegg: A Scientific Life in Soft Matter at Interfaces
- Nanoparticles via Oil-in-Water Microemulsions: a Solvent-Reduced, Energy-Efficient Approach
- Formation of Anisometric Fumed Silica Supraparticles – Mechanism and Application Potential
- Multidirectional, Multicomponent Electric Field Driven Assembly of Complex Colloidal Chains
- Polymer Brush/Metal Nanoparticle Hybrids for Optical Sensor Applications: from Self-Assembly to Tailored Functions and Nanoengineering
- Poly-acrylic Acid Brushes and Adsorbed Proteins
- Interactions of Two Fragments of the Human Antimicrobial Peptide LL-37 with Zwitterionic and Anionic Lipid Monolayers
- Depletion Interaction Mediated by fd-Virus: on the Limit of Low Density and Derjaguin Approximation
- Transport Properties of Polyelectrolyte Solutions. Effect of Confinement in Thin Liquid Films
- Relationship Between Pore Structure and Sorption-Induced Deformation in Hierarchical Silica-Based Monoliths
- Ammonia Dissociation on Graphene Oxide: An Ab Initio Density Functional Theory Calculation
- Responsive Microgels at Surfaces and Interfaces
- Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C60 Bilayer Laminates