Home In silico studies on the anti-acne potential of Garcinia mangostana xanthones and benzophenones
Article
Licensed
Unlicensed Requires Authentication

In silico studies on the anti-acne potential of Garcinia mangostana xanthones and benzophenones

  • Natalia Blicharska , Ziyad Ben Ahmed , Simon Jackson , Dino Rotondo and Veronique Seidel EMAIL logo
Published/Copyright: April 1, 2024
Become an author with De Gruyter Brill

Abstract

Garcinia mangostana fruits are used traditionally for inflammatory skin conditions, including acne. In this study, an in silico approach was employed to predict the interactions of G. mangostana xanthones and benzophenones with three proteins involved in the pathogenicity of acne, namely the human JNK1, Cutibacterium acnes KAS III and exo-β-1,4-mannosidase. Molecular docking analysis was performed using Autodock Vina. The highest docking scores and size-independent ligand efficiency values towards JNK1, C. acnes KAS III and exo-β-1,4-mannosidase were obtained for garcinoxanthone T, gentisein/2,4,6,3′,5′-pentahydroxybenzophenone and mangostanaxanthone VI, respectively. To the best of our knowledge, this is the first report of the potential of xanthones and benzophenones to interact with C. acnes KAS III. Molecular dynamics simulations using GROMACS indicated that the JNK1-garcinoxanthone T complex had the highest stability of all ligand–protein complexes, with a high number of hydrogen bonds predicted to form between this ligand and its target. Petra/Osiris/Molinspiration (POM) analysis was also conducted to determine pharmacophore sites and predict the molecular properties of ligands influencing ADMET. All ligands, except for mangostanaxanthone VI, showed good membrane permeability. Garcinoxanthone T, gentisein and 2,4,6,3′,5′-pentahydroxybenzophenone were identified as the most promising compounds to explore further, including in experimental studies, for their anti-acne potential.


Corresponding author: Veronique Seidel, Strathclyde Institute of Pharmacy & Biomedical Sciences, 3527 University of Strathclyde , Glasgow, UK, E-mail:

Acknowledgements

NB would like to thank the Oleg Polunin Memorial Trust and Modern Botany Ltd for contributing to her PhD scholarship.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. NB and ZBA conducted the in silico study. VS and DR supervised the work. VS, NB and ZBA designed the study, analysed the results and prepared the manuscript. VS, NB, and ZBA drafted the original manuscript. VS, DR, NB and SJ finalised the manuscript.

  3. Competing Interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Layton, AM, Thiboutot, D, Tan, J. Reviewing the global burden of acne: how could we improve care to reduce the burden?. Br J Dermatol 2021;184:219–25. https://doi.org/10.1111/bjd.19477.Search in Google Scholar PubMed

2. Cong, TX, Hao, D, Wen, X, Li, XH, He, G, Jiang, X. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatol Res 2019;311:337–49. https://doi.org/10.1007/s00403-019-01908-x.Search in Google Scholar PubMed

3. Dréno, B, Pécastaings, S, Corvec, S, Veraldi, S, Khammari, A, Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 2018;32:5–14. https://doi.org/10.1111/jdv.15043.Search in Google Scholar PubMed

4. Habeshian, KA, Cohen, BA. Current issues in the treatment of acne vulgaris. Pediatrics 2020;145:s225–30. https://doi.org/10.1542/peds.2019-2056l.Search in Google Scholar

5. Sevimli Dikicier, B. Topical treatment of acne vulgaris: efficiency, side effects, and adherence rate. J Int Med Res 2019;47:2987–92. https://doi.org/10.1177/0300060519847367.Search in Google Scholar PubMed PubMed Central

6. Karadag, AS, Aslan Kayıran, M, Wu, CY, Chen, W, Parish, LC. Antibiotic resistance in acne: changes, consequences and concerns. J Eur Acad Dermatol Venereol 2021;35:73–8. https://doi.org/10.1111/jdv.16686.Search in Google Scholar PubMed

7. Fisk, WA, Lev-Tov, HA, Sivamani, RK. Botanical and phytochemical therapy of acne: a systematic review. Phytother Res 2014;28:1137–52. https://doi.org/10.1002/ptr.5125.Search in Google Scholar PubMed

8. Lambrechts, IA, Canha, MN, Lall, N. Exploiting medicinal plants as possible treatments for acne vulgaris. In: Lall, N, editor. Medicinal Plants for Holistic Health and Well-Being. Academic Press; 2018:117–43 pp. Chapter 4.10.1016/B978-0-12-812475-8.00004-4Search in Google Scholar

9. Nasri, H, Bahmani, M, Shahinfard, N, Moradi Nafchi, A, Saberianpour, S, Rafieian Kopaei, M. Medicinal plants for the treatment of acne vulgaris: a review of recent evidences. Jundishapur J Microbiol 2015;8:e25580. https://doi.org/10.5812/jjm.25580.Search in Google Scholar PubMed PubMed Central

10. Proença, AC, Luís, Â, Duarte, AP. The role of herbal medicine in the treatment of acne vulgaris: a systematic review of clinical trials. Evid base Compl Alternative Med 2022;2022:2011945. https://doi.org/10.1155/2022/2011945.Search in Google Scholar PubMed PubMed Central

11. Maneenoon, K, Khuniad, C, Teanuan, Y, Saedan, N, Prom-In, S, Rukleng, N, et al.. Ethnomedicinal plants used by traditional healers in Phatthalung Province, Peninsular Thailand. J Ethnobiol Ethnomed 2015;11:1–20. https://doi.org/10.1186/s13002-015-0031-5.Search in Google Scholar PubMed PubMed Central

12. Obolskiy, D, Pischel, I, Siriwatanametanon, N, Heinrich, M. Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 2009;23:1047–65. https://doi.org/10.1002/ptr.2730.Search in Google Scholar PubMed

13. Khumsupan, P, Gritsanapan, W. Anti-acne activity of Garcinia mangostana L.: a review. Plant Science Today 2014;1:147–50. https://doi.org/10.14719/pst.2014.1.3.39.Search in Google Scholar

14. Krisdaphong, T, Jedsadapaisid, S. Antimicrobial activity of Garcinia mangostana extract for anti-acne therapy. In: International Federation of Societies of Cosmetic Chemists (IFSCC) Magazine 2012;1:9–12 pp.Search in Google Scholar

15. Lueangarun, S, Sriviriyakul, K, Tempark, T, Managit, C, Sithisarn, P. Clinical efficacy of 0.5% topical mangosteen extract in nanoparticle loaded gel in treatment of mild‐to‐moderate acne vulgaris: a 12‐week, split‐face, double‐blinded, randomized, controlled trial. J Cosmet Dermatol 2019;18:1395–403. https://doi.org/10.1111/jocd.12856.Search in Google Scholar PubMed

16. Pan-In, P, Wongsomboon, A, Kokpol, C, Chaichanawongsaroj, N, Wanichwecharungruang, S. Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci 2015;129:226–32. https://doi.org/10.1016/j.jphs.2015.11.005.Search in Google Scholar PubMed

17. Pothitirat, W, Chomnawang, MT, Gritsanapan, W. Anti-acne-inducing bacterial activity of mangosteen fruit rind extracts. Med Princ Pract 2010;19:281–6. https://doi.org/10.1159/000312714.Search in Google Scholar PubMed

18. Sukatta, U, Rugthaworn, P, Pitpiangchan, P, Dilokkunanant, U. Development of mangosteen anti-acne gel. Agric Nat Resour 2008;42:163–8.Search in Google Scholar

19. Xu, N, Deng, W, He, G, Gan, X, Gao, S, Chen, Y, et al.. Alpha-and gamma-mangostins exhibit anti-acne activities via multiple mechanisms. Immunopharmacol Immunotoxicol 2018;40:415–22. https://doi.org/10.1080/08923973.2018.1519831.Search in Google Scholar PubMed

20. Abdalla, M, Mohapatra, RK, Sarangi, AK, Mohapatra, PK, Ali Eltayb, W, Alam, M, et al.. In silico studies on phytochemicals to combat the emerging COVID-19 infection. J Saudi Chem Soc 2021;25:101367. https://doi.org/10.1016/j.jscs.2021.101367.Search in Google Scholar

21. Ali, MT, Blicharska, N, Shilpi, JA, Seidel, V. Investigation of the anti-TB potential of selected propolis constituents using a molecular docking approach. Sci Rep 2018;8:12238. https://doi.org/10.1038/s41598-018-30209-y.Search in Google Scholar PubMed PubMed Central

22. Ben Ahmed, Z, Hefied, F, Mahammed, TH, Seidel, V, Yousfi, M. Identification of potential anti‐Alzheimer agents from Pistacia atlantica Desf. galls using UPLC fingerprinting, chemometrics, and molecular docking analyses. J Food Process Preserv 2022;46:e16916. https://doi.org/10.1111/jfpp.16916.Search in Google Scholar

23. Qasaymeh, RM, Rotondo, D, Oosthuizen, CB, Lall, N, Seidel, V. Predictive binding affinity of plant-derived natural products towards the protein kinase G enzyme of Mycobacterium tuberculosis (MtPknG). Plants 2019;8:477. https://doi.org/10.3390/plants8110477.Search in Google Scholar PubMed PubMed Central

24. Shilpi, JA, Ali, MT, Saha, S, Hasan, S, Gray, AI, Seidel, V. Molecular docking studies on InhA, MabA and PanK enzymes from Mycobacterium tuberculosis of ellagic acid derivatives from Ludwigia adscendens and Trewia nudiflora. Silico Pharmacol 2015;3:10. https://doi.org/10.1186/s40203-015-0014-1.Search in Google Scholar PubMed PubMed Central

25. Shirlaw, O, Billah, Z, Attar, B, Hughes, L, Qasaymeh, RM, Seidel, V, et al.. Antibiofilm activity of heather and manuka honeys and antivirulence potential of some of their constituents on the DsbA1 enzyme of Pseudomonas aeruginosa. Antibiotics 2020;9:911. https://doi.org/10.3390/antibiotics9120911.Search in Google Scholar PubMed PubMed Central

26. Siraj, MA, Howlader, MSI, Rahaman, MS, Shilpi, JA, Seidel, V. Antinociceptive and sedative activity of Vernonia patula and predictive interactions of its phenolic compounds with the cannabinoid type 1 receptor. Phytother Res 2020;35:1069–79. https://doi.org/10.1002/ptr.6876.Search in Google Scholar PubMed

27. Siraj, MA, Rahman, MS, Tan, GT, Seidel, V. Molecular docking and molecular dynamics simulation studies of triterpenes from Vernonia patula with the cannabinoid type 1 receptor. Int J Mol Sci 2021;22:3595. https://doi.org/10.3390/ijms22073595.Search in Google Scholar PubMed PubMed Central

28. Cheon, D, Kim, J, Jeon, D, Shin, H-C, Kim, Y. Target proteins of phloretin for its anti-inflammatory and antibacterial activities against Propionibacterium acnes-induced skin infection. Molecules 2019a;24:1319. https://doi.org/10.3390/molecules24071319.Search in Google Scholar PubMed PubMed Central

29. Cheon, D, Lee, WC, Lee, Y, Lee, JY, Kim, Y. Structural basis of branched-chain fatty acid synthesis by Propionibacterium acnes β-ketoacyl acyl Carrier protein synthase. Biochem Biophys Res Commun 2019b;509:322–8. https://doi.org/10.1016/j.bbrc.2018.12.134.Search in Google Scholar PubMed

30. Reichenbach, T, Kalyani, D, Gandini, R, Svartström, O, Aspeborg, H, Divne, C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1, 4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018;13:e0204703. https://doi.org/10.1371/journal.pone.0204703.Search in Google Scholar PubMed PubMed Central

31. Abdallah, HM, El-Bassossy, HM, Mohamed, GA, El-Halawany, AM, Alshali, KZ, Banjar, ZM. Mangostanaxanthones III and IV: advanced glycation end-product inhibitors from the pericarp of Garcinia mangostana. J Nat Med 2017;71:216–26. https://doi.org/10.1007/s11418-016-1051-8.Search in Google Scholar PubMed

32. Al-Massarani, SM, El Gamal, AA, Al-Musayeib, NM, Mothana, RA, Basudan, OA, Al-Rehaily, AJ, et al.. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative. Molecules 2013;18:10599–608. https://doi.org/10.3390/molecules180910599.Search in Google Scholar PubMed PubMed Central

33. Asai, F, Tosa, H, Tanaka, T, Iinuma, M. A xanthone from pericarps of Garcinia mangostana. Phytochemistry 1995;39:943–4. https://doi.org/10.1016/0031-9422(95)00042-6.Search in Google Scholar

34. Balasubramanian, K, Rajagopalan, K. Novel xanthones from Garcinia mangostana, structures of BR-xanthone-A and BR-xanthone-B. Phytochemistry 1988;27:1552–4. https://doi.org/10.1016/0031-9422(88)80242-5.Search in Google Scholar

35. Chae, HS, Kim, EY, Han, L, Kim, NR, Lam, B, Paik, JH, et al.. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L.(Guttiferae). Eur J Lipid Sci Technol 2016;118:1416–21. https://doi.org/10.1002/ejlt.201500516.Search in Google Scholar

36. Chairungsrilerd, N, Takeuchi, K, Ohizumi, Y, Nozoe, S, Ohta, T. Mangostanol, a prenyl xanthone from Garcinia mangostana. Phytochemistry 1996;43:1099–102. https://doi.org/10.1016/s0031-9422(96)00410-4.Search in Google Scholar

37. Chin, Y-W, Jung, H-A, Chai, H, Keller, WJ, Kinghorn, AD. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 2008;69:754–8. https://doi.org/10.1016/j.phytochem.2007.09.023.Search in Google Scholar PubMed

38. Du, CT, Francis, FJ. Anthocyanins of mangosteen, Garcinia mangostana. J Food Sci 1977;42:1667–8. https://doi.org/10.1111/j.1365-2621.1977.tb08452.x.Search in Google Scholar

39. Fu, M, Qiu, SX, Xu, Y, Wu, J, Chen, Y, Yu, Y, et al.. A new xanthone from the pericarp of Garcinia mangostana. Nat Prod Commun 2013;8:1934578X1300801219. https://doi.org/10.1177/1934578x1300801219.Search in Google Scholar

40. Gopalakrishnan, G, Balaganesan, B. Two novel xanthones from Garcinia mangostana. Fitoterapia 2000;71:607–9. https://doi.org/10.1016/s0367-326x(00)00199-4.Search in Google Scholar PubMed

41. Gopalakrishnan, G, Banumathi, B, Suresh, G. Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J Nat Prod 1997;60:519–24. https://doi.org/10.1021/np970165u.Search in Google Scholar PubMed

42. Huang, Y-L, Chen, C-C, Chen, Y-J, Huang, R-L, Shieh, B-J. Three xanthones and a benzophenone from Garcinia mangostana. J Nat Prod 2001;64:903–6. https://doi.org/10.1021/np000583q.Search in Google Scholar PubMed

43. Ibrahim, S, Abdallah, H, El-Halawany, A, Radwan, M, Shehata, I, Al-Harshany, E, et al.. Garcixanthones B and C, new xanthones from the pericarps of Garcinia mangostana and their cytotoxic activity. Phytochem Lett 2018;25:12–16. https://doi.org/10.1016/j.phytol.2018.03.009.Search in Google Scholar

44. Ibrahim, S, Abdallah, H, El-Halawany, A, Nafady, A, Mohamed, G. Mangostanaxanthone VIII, a new xanthone from Garcinia mangostana and its cytotoxic activity. Nat Prod Res 2019a;33:258–65. https://doi.org/10.1080/14786419.2018.1446012.Search in Google Scholar PubMed

45. Ibrahim, S, Mohamed, G, Elfaky, M, Al Haidari, R, Zayed, M, El-Kholy, A, et al.. Garcixanthone A, a new cytotoxic xanthone from the pericarps of Garcinia mangostana. J Asian Nat Prod Res 2019b;21:291–7. https://doi.org/10.1080/10286020.2017.1423058.Search in Google Scholar PubMed

46. Ibrahim, S, Mohamed, G, Khayat, M, Ahmed, S, Abo‐Haded, H. Garcixanthone D, a new xanthone, and other xanthone derivatives from Garcinia mangostana pericarps: their α‐amylase inhibitory potential and molecular docking studies. Starch Staerke 2019c;71:1800354. https://doi.org/10.1002/star.201800354.Search in Google Scholar

47. Ibrahim, S, Mohamed, G, Khayat, M, Ahmed, S, Abo‐Haded, H. α‐Amylase inhibition of xanthones from Garcinia mangostana pericarps and their possible use for the treatment of diabetes with molecular docking studies. J Food Biochem 2019d;43:e12844. https://doi.org/10.1111/jfbc.12844.Search in Google Scholar PubMed

48. Ibrahim, S, Mohamed, G, Khayat, M, Ahmed, S, Abo-Haded, H, Alshali, K. Mangostanaxanthone VIIII, a new xanthone from Garcinia mangostana pericarps, alpha-amylase inhibitory activity, and molecular docking studies. Br J Pharmacogn 2019e;29:206–12. https://doi.org/10.1016/j.bjp.2019.02.005.Search in Google Scholar

49. Iinuma, M, Tosa, H, Tanaka, T, Asai, F, Kobayashl, Y, Shimano, R, et al.. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J Pharm Pharmacol 1996a;48:861–5. https://doi.org/10.1111/j.2042-7158.1996.tb03988.x.Search in Google Scholar PubMed

50. Jiang, HZ, Quan, XF, Tian, WX, Hu, JM, Wang, PC, Huang, SZ, et al.. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg Med Chem Lett 2010;20:6045–7. https://doi.org/10.1016/j.bmcl.2010.08.061.Search in Google Scholar PubMed

51. Jung, H-A, Su, B-N, Keller, WJ, Mehta, RG, Kinghorn, AD. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 2006;54:2077–82. https://doi.org/10.1021/jf052649z.Search in Google Scholar PubMed

52. Li, P, Yang, Z, Tang, B, Zhang, Q, Chen, Z, Zhang, J, et al.. Identification of xanthones from the mangosteen pericarp that inhibit the growth of Ralstonia solanacearum. ACS Omega 2019;5:334–43. https://doi.org/10.1021/acsomega.9b02746.Search in Google Scholar PubMed PubMed Central

53. Liu, Q, Li, D, Wang, A, Dong, Z, Yin, S, Zhang, Q, et al.. Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry 2016;131:115–23. https://doi.org/10.1016/j.phytochem.2016.08.007.Search in Google Scholar PubMed

54. Mahabusarakam, W, Wiriyachitra, P, Taylor, WC. Chemical constituents of Garcinia mangostana. J Nat Prod 1987;50:474–8. https://doi.org/10.1021/np50051a021.Search in Google Scholar

55. Manogna Reddy, D, JainMatsumoto, K, Akao, Y, Kobayashi, E, Ohguchi, K, Ito, T, et al.. Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 2003;66:1124–7. https://doi.org/10.1021/np020546u.Search in Google Scholar PubMed

56. Mohamed, G, Ibrahim, S, Shaaban, M, Ross, S. Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Fitoterapia 2014;98:215–21. https://doi.org/10.1016/j.fitote.2014.08.014.Search in Google Scholar PubMed

57. Mohamed, G, Al-Abd, A, El-Halawany, A, Abdallah, H, Ibrahim, S. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J Ethnopharmacol 2017;198:302–12. https://doi.org/10.1016/j.jep.2017.01.030.Search in Google Scholar PubMed

58. Sen, A, Sarkar, K, Mazumder, P, Banerji, N, Uusvuori, R, Hase, TA. A xanthone from Garcinia mangostana. Phytochemistry 1980;19:2223–5. https://doi.org/10.1016/s0031-9422(00)82235-9.Search in Google Scholar

59. Sen, A, Sarkar, K, Mazumder, P, Banerji, N, Uusvuori, R, Hase, T. The structures of garcinones A, B and C: three new xanthones from Garcinia mangostana. Phytochemistry 1982;21:1747–50. https://doi.org/10.1016/0031-9422(82)85052-8.Search in Google Scholar

60. Suksamrarn, S, Komutiban, O, Ratananukul, P, Chimnoi, N, Lartpornmatulee, N, Suksamrarn, A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull 2006;54:301–5. https://doi.org/10.1248/cpb.54.301.Search in Google Scholar PubMed

61. Suksamrarn, S, Suwannapoch, N, Phakhodee, W, Thanuhiranlert, J, Ratananukul, P, Chimnoi, N, et al.. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 2003;51:857–9. https://doi.org/10.1248/cpb.51.857.Search in Google Scholar PubMed

62. Suksamrarn, S, Suwannapoch, N, Ratananukul, P, Aroonlerk, N, Suksamrarn, A. Xanthones from the green fruit hulls of Garcinia mangostana. J Nat Prod 2002;65:761–3. https://doi.org/10.1021/np010566g.Search in Google Scholar PubMed

63. Tran, TH, Le Huyen, T, Tran, TM, Nguyen, TA, Pham, TB, Nguyen Tien, D. A new megastigmane sulphoglycoside and polyphenolic constituents from pericarps of Garcinia mangostana. Nat Prod Res 2016;30:1598–604. https://doi.org/10.1080/14786419.2015.1126261.Search in Google Scholar PubMed

64. Tran, TH, Le, HT, Nguyen, HM, Tran, TH, Do Thi, T, Nguyen, XC, et al.. Garcinoxanthones SV, new xanthone derivatives from the pericarps of Garcinia mangostana together with their cytotoxic and antioxidant activities. Fitoterapia 2021;151:104880. https://doi.org/10.1016/j.fitote.2021.104880.Search in Google Scholar PubMed

65. Wang, S, Li, Q, Jing, M, Alba, E, Yang, X, Sabaté, R, et al.. Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s disease. Neurochem Res 2016;41:1806–17. https://doi.org/10.1007/s11064-016-1896-y.Search in Google Scholar PubMed

66. Xu, T, Deng, Y, Zhao, S, Shao, Z. A new xanthone from the pericarp of Garcinia mangostana. J Chem Res 2016;40:10–11. https://doi.org/10.3184/174751916x14495703232667.Search in Google Scholar

67. Xu, Z, Huang, L, Chen, X-H, Zhu, X-F, Qian, X-J, Feng, G-K, et al.. Cytotoxic prenylated xanthones from the pericarps of Garcinia mangostana. Molecules 2014;19:1820–7. https://doi.org/10.3390/molecules19021820.Search in Google Scholar PubMed PubMed Central

68. Yang, L, Zhang, D, Li, J-B, Zhang, X, Zhou, N, Zhang, W-Y, et al.. Prenylated xanthones with α-glucosidase and α-amylase inhibitory effects from the pericarp of Garcinia mangostana. J Asian Nat Prod Res 2022;24:624–33. https://doi.org/10.1080/10286020.2021.1967328.Search in Google Scholar PubMed

69. Yang, R, Li, P, Li, N, Zhang, Q, Bai, X, Wang, L, et al.. Xanthones from the pericarp of Garcinia mangostana. Molecules 2017;22:683. https://doi.org/10.3390/molecules22050683.Search in Google Scholar PubMed PubMed Central

70. Yoshimura, M, Ninomiya, K, Tagashira, Y, Maejima, K, Yoshida, T, Amakura, Y. Polyphenolic constituents of the pericarp of mangosteen (Garcinia mangostana L.). J Agric Food Chem 2015;63:7670–4. https://doi.org/10.1021/acs.jafc.5b01771.Search in Google Scholar PubMed

71. Yu, L, Zhao, M, Yang, B, Zhao, Q, Jiang, Y. Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem 2007;104:176–81. https://doi.org/10.1016/j.foodchem.2006.11.018.Search in Google Scholar

72. Zarena, A, Sankar, KU. Isolation and identification of pelargonidin 3-glucoside in mangosteen pericarp. Food Chem 2012;130:665–70. https://doi.org/10.1016/j.foodchem.2011.07.106.Search in Google Scholar

73. Zhang, Y, Song, Z, Hao, J, Qiu, S, Xu, Z. Two new prenylated xanthones and a new prenylated tetrahydroxanthone from the pericarp of Garcinia mangostana. Fitoterapia 2010;81:595–9. https://doi.org/10.1016/j.fitote.2010.02.002.Search in Google Scholar PubMed

74. Zhao, Y, Liu, J-P, Lu, D, Li, P-Y, Zhang, L-X. A new antioxidant xanthone from the pericarp of Garcinia mangostana Linn. Nat Prod Res 2010;24:1664–70. https://doi.org/10.1080/14786419.2010.499539.Search in Google Scholar PubMed

75. Zhao, Y, Liu, J-P, Lu, D, Li, P-Y, Zhang, L-X. Two new xanthones from the pericarp of Garcinia mangostana. Nat Prod Res 2012;26:61–5. https://doi.org/10.1080/14786419.2010.534094.Search in Google Scholar PubMed

76. Zhou, X, He, L, Wu, X, Zhong, Y, Zhang, J, Wang, Y, et al.. Two new xanthones from the pericarp of Garcinia mangostana. Nat Prod Res 2015;29:19–23. https://doi.org/10.1080/14786419.2014.927873.Search in Google Scholar PubMed

77. Zhou, X, Huang, R, Hao, J, Huang, H, Fu, M, Xu, Z, et al.. Two new prenylated xanthones from the pericarp of Garcinia mangostana (Mangosteen). Helv Chim Acta 2011;94:2092–8. https://doi.org/10.1002/hlca.201100157.Search in Google Scholar

78. Baek, S, Kang, NJ, Popowicz, GM, Arciniega, M, Jung, SK, Byun, S, et al.. Structural and functional analysis of the natural JNK1 inhibitor quercetagetin. J Mol Biol 2013;425:411–23. https://doi.org/10.1016/j.jmb.2012.10.019.Search in Google Scholar PubMed PubMed Central

79. Jendele, L, Krivak, R, Skoda, P, Novotny, M, Hoksza, D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res 2019;47:W345–9. https://doi.org/10.1093/nar/gkz424.Search in Google Scholar PubMed PubMed Central

80. Nissink, JWM. Simple size-independent measure of ligand efficiency. J Chem Inf Model 2009;49:1617–22. https://doi.org/10.1021/ci900094m.Search in Google Scholar PubMed

81. Ferreira de Freitas, R, Schapira, M. A systematic analysis of atomic protein–ligand interactions in the PDB. Med Chem Commun 2017;8:1970–81. https://doi.org/10.1039/c7md00381a.Search in Google Scholar PubMed PubMed Central

82. Lemkul, JA. From proteins to perturbed Hamiltonians: a suite of tutorials for the GROMACS-2018 molecular simulation package [article v1. 0]. Living J Comput Mol Sci 2018;1:33011. https://doi.org/10.33011/livecoms.1.1.5068.Search in Google Scholar

83. Zoete, V, Cuendet, MA, Grosdidier, A, Michielin, O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 2011;32:2359–68. https://doi.org/10.1002/jcc.21816.Search in Google Scholar PubMed

84. Platsidaki, E, Dessinioti, C. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne. F1000Research 2018;7:F1000. Faculty Rev-1953. https://doi.org/10.12688/f1000research.15659.1.Search in Google Scholar PubMed PubMed Central

85. Tanghetti, EA. The role of inflammation in the pathology of acne. J Clin Aesthetic Dermatol 2013;6:27–35.Search in Google Scholar

86. Li, WH, Zhang, L, Lyte, P, Rodriguez, K, Cavender, D, Southall, MD. p38 MAP kinase inhibition reduces Propionibacterium acnes-induced inflammation in vitro. Dermatol Ther 2015;5:53–66. https://doi.org/10.1007/s13555-015-0072-7.Search in Google Scholar PubMed PubMed Central

87. Graczyk, PP. JNK inhibitors as anti-inflammatory and neuroprotective agents. Future Med Chem 2013;5:539–51. https://doi.org/10.4155/fmc.13.34.Search in Google Scholar PubMed

88. Seledtsov, VI, Malashchenko, VV, Meniailo, ME, Atochin, DN, Seledtsova, GV, Schepetkin, IA. Inhibitory effect of IQ-1S, a selective c-Jun N-terminal kinase (JNK) inhibitor, on phenotypical and cytokine-producing characteristics in human macrophages and T-cells. Eur J Pharmacol 2020;878:173116. https://doi.org/10.1016/j.ejphar.2020.173116.Search in Google Scholar PubMed

89. Nofiani, R, Philmus, B, Nindita, Y, Mahmud, T. 3-ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. Med Chem Commun 2019;10:1517–30. https://doi.org/10.1039/c9md00162j.Search in Google Scholar PubMed PubMed Central

90. Adem, Ş, Eyupoglu, V, Sarfraz, I, Rasul, A, Zahoor, AF, Ali, M, et al.. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine 2021;85:153310. https://doi.org/10.1016/j.phymed.2020.153310.Search in Google Scholar PubMed PubMed Central

91. Fatriansyah, JF, Boanerges, AG, Kurnianto, SR, Pradana, AF, Fadilah, et al.. Molecular dynamics simulation of ligands from Anredera cordifolia (binahong) to the main Protease (Mpro) of SARS-CoV-2. J Trop Med 2022;2022:1178228. https://doi.org/10.1155/2022/1178228.Search in Google Scholar PubMed PubMed Central

92. Kushwaha, PP, Singh, AK, Bansal, T, Yadav, A, Prajapati, KS, Shuaib, M, et al.. Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Front Cell Infect Microbiol 2021;11:730288. https://doi.org/10.3389/fcimb.2021.730288.Search in Google Scholar PubMed PubMed Central

93. Badieyan, S, Bevan, DR, Zhang, C. Study and design of stability in GH5 cellulases. Biotechnol Bioeng 2012;109:31–44. https://doi.org/10.1002/bit.23280.Search in Google Scholar PubMed

94. Martínez, L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One 2015;10:e0119264. https://doi.org/10.1371/journal.pone.0119264.Search in Google Scholar PubMed PubMed Central

95. Purmonen, M, Valjakka, J, Takkinen, K, Laitinen, T, Rouvinen, J. Molecular dynamics studies on the thermostability of family II xylanases. Protein Eng Des Sel 2007;20:551–9. https://doi.org/10.1093/protein/gzm056.Search in Google Scholar PubMed

96. Ahamad, S, Gupta, D, Kumar, V. Targeting SARS-CoV-2 nucleocapsid oligomerization: insights from molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2022;40:2430–43. https://doi.org/10.1080/07391102.2020.1839563.Search in Google Scholar PubMed PubMed Central

97. Vijayabaskar, MS, Vishveshwara, S. Interaction energy based protein structure networks. Biophys J 2010;99:3704–15. https://doi.org/10.1016/j.bpj.2010.08.079.Search in Google Scholar PubMed PubMed Central

98. Waidyasooriya, HM, Hariyama, M, Kasahara, K. An FPGA accelerator for molecular dynamics simulation using OpenCL. Int J Netw Distrib Comput 2017;5:52–61. https://doi.org/10.2991/ijndc.2017.5.1.6.Search in Google Scholar

99. Hadda, TB, Fergoug, T, Warad, I, Masand, V, Sheikh, J. POM as a quick bioinformatic platform to select flavonoids and their metabolites as potential and efficient HIV-1 integrase inhibitors. Res Chem Intermed 2013;39:1227–44. https://doi.org/10.1007/s11164-012-0679-6.Search in Google Scholar

100. Hadda, TB, Rastija, V, AlMalki, F, Titi, A, Touzani, R, Mabkhot, YN, et al.. Petra/osiris/molinspiration and molecular docking analyses of 3-hydroxy-indolin-2-one derivatives as potential antiviral agents. Curr Comput Aided Drug Des 2021;17:123–33. https://doi.org/10.2174/1573409916666191226110029.Search in Google Scholar PubMed

101. Jarrahpour, A, Fathi, J, Mimouni, M, Hadda, BT, Sheikh, J, Chohan, Z, et al.. Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med Chem Res 2012;21:1984–90. https://doi.org/10.1007/s00044-011-9723-0.Search in Google Scholar

102. Tariq, M, Sirajuddin, M, Ali, S, Khalid, N, Tahir, MN, Khan, H, et al.. Pharmacological investigations and petra/osiris/molinspiration (POM) analyses of newly synthesized potentially bioactive organotin (IV) carboxylates. J Photochem Photobiol B Biol 2016;158:174–83. https://doi.org/10.1016/j.jphotobiol.2016.02.028.Search in Google Scholar PubMed

103. Abdelhady, MIS, Kamal, AM, Barghash, MF. POM analyses, immunomodulatory, cytotoxic activities and polyphenolic constituents of Callistemon viridiflorus fruits. Bull Fac Pharm Cairo Univ 2018;56:175–8. https://doi.org/10.1016/j.bfopcu.2018.06.001.Search in Google Scholar

104. Auranwiwat, C, Trisuwan, K, Saiai, A, Pyne, SG, Ritthiwigrom, T. Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa. Fitoterapia 2014;98:179–83. https://doi.org/10.1016/j.fitote.2014.08.003.Search in Google Scholar PubMed

105. Iinuma, M, Tosa, H, Tanaka, T, Kanamaru, S, Asai, F, Kobayashi, Y, et al.. Antibacterial activity of some Garcinia benzophenone derivatives against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 1996b;19:311–14. https://doi.org/10.1248/bpb.19.311.Search in Google Scholar PubMed

106. Koh, JJ, Qiu, S, Zou, H, Lakshminarayanan, R, Li, J, Zhou, X, et al.. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta Biomembr 2013;1828:834–44. https://doi.org/10.1016/j.bbamem.2012.09.004.Search in Google Scholar PubMed

107. Asasutjarit, R, Meesomboon, T, Adulheem, P, Kittiwisut, S, Sookdee, P, Samosornsuk, W, et al.. Physicochemical properties of alpha-mangostin loaded nanoemulsions prepared by ultrasonication technique. Heliyon 2019;5:e02465. https://doi.org/10.1016/j.heliyon.2019.e02465.Search in Google Scholar PubMed PubMed Central

108. Lipinski, CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235–49. https://doi.org/10.1016/s1056-8719(00)00107-6.Search in Google Scholar PubMed

109. Lipinski, CA, Lombardo, F, Dominy, BW, Feeney, PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26. https://doi.org/10.1016/s0169-409x(96)00423-1.Search in Google Scholar

110. Palm, K, Luthman, K, Unge, A-L, Strandlund, G, Artursson, P. Correlation of drug absorption with molecular surface properties. J Pharmaceut Sci 1996;85:32–9. https://doi.org/10.1021/js950285r.Search in Google Scholar PubMed

111. Palm, K, Stenberg, P, Luthman, K, Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharmaceut Res 1997;14:568–71. https://doi.org/10.1023/a:1012188625088.10.1023/A:1012188625088Search in Google Scholar PubMed

112. Van de Waterbeemd, H. Silico models to predict oral absorption. In: Taylor, JB, Triggle, DJ, editors. Comprehensive Medicinal Chemistry II, Volume 5-ADME-Tox approaches. Oxford: Elsevier; 2007:669–97 pp. Chapter 5.28.10.1016/B0-08-045044-X/00145-0Search in Google Scholar

113. Kostal, J. Computational chemistry in predictive toxicology: status quo et quo vadis? In: Fishbein, JC, Heilman, JM, editors. Advances in Molecular Toxicology, vol 10. Amsterdam, The Netherlands: Elsevier; 2016:139–86 pp.10.1016/B978-0-12-804700-2.00004-0Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znc-2023-0118).


Received: 2023-09-07
Accepted: 2024-03-09
Published Online: 2024-04-01
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znc-2023-0118/html?lang=en&srsltid=AfmBOorBXQ4TEqEwEAuXKpUmNFbE-zES4AbJE357YrBlomZzXFVTkEhI
Scroll to top button