Startseite Pobeguinine: a monoterpene indole alkaloid and other bioactive constituents from the stem bark of Nauclea pobeguinii
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pobeguinine: a monoterpene indole alkaloid and other bioactive constituents from the stem bark of Nauclea pobeguinii

  • Jean J.K. Bankeu EMAIL logo , Stéphanie Madjouka , Guy R.T. Feuya , Yannick S.F. Fongang , Sadaf Siddiqui , Iftikhar Ali , Lateef Mehreen , Bruno N. Lenta EMAIL logo , Sammer Yousuf , Didérot T. Noungoué , Augustin S. Ngouela und Muhammad S. Ali
Veröffentlicht/Copyright: 10. Januar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Phytochemical investigation of dichloromethane neutral phase of stem bark of Nauclea pobeguinii led to the isolation of a new monoterpene indole alkaloid, pobeguinine 1 along with 14 known compounds including (−)-naucleofficine D (2a), (+)-naucleofficine D (2b), naucleidinal (3), quafrinoic acid (4), betulinic acid (5), ursolic acid (6), quinovic acid (7), quinovic acid 3-O-α-L-rhamnopyranoside (8a), quinovic acid 3-O-β-D-fucopyranoside (8b), β-sitosterol (9), β-sitosterol 3-O-β-D-glucopyranoside (10), benzoic acid (11), lacceroic acid (12) and n-heptacosane (13). The structure of compound 1 was unambiguously assigned on the basis of single-crystal X-ray diffraction technique. The Hirshfeld surface analysis was further carried out to quantitatively analyze the role of various types of hydrogen bonding in crystal stability. These structures were elucidated using spectroscopic methods. The isolates were evaluated for their radical scavenging properties as well as inhibitory activities against urease and tyrosinase enzymes with IC50 values ranging from 13.4 to 58.9, 46.0 to 86.7 and 39.4 to 87.1 μg/mL, respectively. Compound 6 exhibited maximum radical scavenging activity with IC50 13.4 μg/mL, while compound 4 exhibited maximum tyrosinase with IC50 39.4 μg/mL. All the isolates showed moderate urease inhibition.

Acknowledgments

The authors are very grateful to The World Academy of Sciences (TWAS) and the International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan, for their financial and technical support through the ICCBS-TWAS Postdoctoral Fellowship number 3240280476 granted to B.K.J.J.

  1. Disclosure statement: The authors declare that there is no conflict of interest regarding the publication of this manuscript.

References

1. Morah FN. Naucleidal and epinaucleidal from antiviral preparation from Nauclea latifolia. JJST 1994;5:22–4.Suche in Google Scholar

2. Shigemori H, Kagata T, Ishiyama H, Morah F, Ohsaki A, Kobayashi J. Naucleamides A-E, new monoterpene indole alkaloids from Nauclea latifolia. Chem Pharm Bull 2003;51:58–61.10.1248/cpb.51.58Suche in Google Scholar PubMed

3. Martins D, Nunez CV. Secondary metabolites from Rubiaceae species. Molecules 2015;20:13422–95.10.3390/molecules200713422Suche in Google Scholar PubMed PubMed Central

4. Mesia K, Tona L, Mampunza MM, Ntamabyaliro N, Muanda T, Muyembe T, et al. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem. Bark in human adult volunteers with diagnosed uncomplicated falciparum. Malaria. Part 1: a clinical phase IIA trial. Planta Med 2012;78:211–8.10.1055/s-0031-1298488Suche in Google Scholar PubMed

5. Mesia GK, Tona GL, Penge O, Lusakibanza M, Nanga TM, Cimanga RK, et al. Antimalarial activities and toxicities of three plants used as traditional remedies for malaria in the Democratic Republic of Congo: Croton mubango, Nauclea pobeguinii and Pyrenacantha staudtii. Ann Trop Med Parasitol 2005;99:345–57.10.1179/136485905X36325Suche in Google Scholar PubMed

6. Kuete V, Sandjo LP, Mbaveng AT, Seukep JA, Ngadjui BT, Efferth T. Cytotoxicity of selected Cameroonian medicinal plants and Nauclea pobeguinii towards multi-factorial drug-resistant cancer cells. BMC Complement Altern Med 2015;15:309.10.1186/s12906-015-0841-ySuche in Google Scholar PubMed PubMed Central

7. Zeches M, Richard B, Gueye-M’Bahia L, Le Men-Olivier L. Constituents of root bark of Nauclea pobeguinii. J Nat Prod 1985;48:42–6.10.1021/np50037a007Suche in Google Scholar

8. Xu YJ, Foubert K, Dhooghe L, Lemière F, Cimanga K, Mesia K, et al. Chromatographic profiling and identification of two new iridoid-indole alkaloids by UPLC–MS and HPLC-SPE-NMR analysis of an antimalarial extract from Nauclea pobeguinii. Phytochem Lett 2012;5:316–9.10.1016/j.phytol.2012.02.010Suche in Google Scholar

9. Sun J, Lou H, Dai S, Xu H, Zhao F, Liu K. Indole alkoloids from Nauclea officinalis with weak antimalarial activity. Phytochemistry 2008;69:1405–10.10.1016/j.phytochem.2008.01.008Suche in Google Scholar PubMed

10. Takayama H, Miyabe Y, Shito T, Kitajima M, Aimi N. Biomimetic synthesis of nauclea indole alkaloids, naucleidinal, and 3-epi-naucleidinal, by stereoselective rearrangement of strictosamide and the vicoside lactam aglycones. Chem Pharm Bull 1996;44:2192–4.10.1248/cpb.44.2192Suche in Google Scholar

11. Ajaiyeoba EO, Krebs HC. Quafrinoic acids: two new triterpenoids from Quassia africana stem bark. Niger J Nat Prod Med 2003;7:39–41.10.4314/njnpm.v7i1.11704Suche in Google Scholar

12. Mahato SB, Kundu AP. 13C NMR Spectra of pentacyclic triterpenoids – a compilation and some salient features. Phytochemistry 1994;37:1517–75.10.1016/S0031-9422(00)89569-2Suche in Google Scholar

13. Mostafa M, Nahar N, Mosihuzzaman M, Sokeng SD, Fatima N, Ur Rahman A, et al. Phosphodiesterase-I inhibitor quinovic acid glycosides from Bridelia ndellensis. Nat Prod Res 2006;20:686–92.10.1080/14786410600661658Suche in Google Scholar PubMed

14. Chaturvedula VS, Prakash I. Isolation of stigmasterol and β-sitosterol from the dichloromethane extract of Rubus suavissimus. Int Curr Pharm J 2012;1:239–42.10.3329/icpj.v1i9.11613Suche in Google Scholar

15. Shi G, Liu J, Zhao W, Liu Y, Tian X. Separation and purification and in vitro anti-proliferative activity of leukemia cell K562 of Galium aparine L. petroleum ether phase. Saudi Pharm J 2016;24:241–4.10.1016/j.jsps.2016.04.005Suche in Google Scholar PubMed PubMed Central

16. Terakita A, Matsunaga H, Ueda T, Eguchi T, Echigoya M, Umemoto K, et al. Investigation of intermolecular interaction in molecular complex of tryptamind and benzoic acid by solid-state 2D NMR. Chem Pharm Bull 2004;52:546–51.10.1248/cpb.52.546Suche in Google Scholar PubMed

17. Kalimuthu S, Latha S, Selvamani P, Rajesh P, Balamurugan B, Chandrasekar TM. Isolation, characterization and antibacterial evaluation on long chain fatty acids from Limnophilla polystachya Benth. Asian J Chem 2011;23:791–4.Suche in Google Scholar

18. Siddiqui BS, Rasheed M, Ilyas F, Gulzar T, Tariq RM, Naqvi SN. Analysis of insecticidal Azadirachta indica A. Juss. fractions. Z Naturforsch 2004;59c:104–12.10.1515/znc-2004-1-221Suche in Google Scholar PubMed

19. Shigemori H, Kagata T, Ishiyama H, Morah F, Ohsaki A, Kobayashi J. New monoterpene alkaloids from Nauclea latifolia. Chem Pharm Bull 2003;51:58–61.10.1248/cpb.51.58Suche in Google Scholar PubMed

20. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy, 5th ed., Stamford, CT, USA: Cengage Learning, 2015.Suche in Google Scholar

21. Sichaem J, Surapinit S, Siripong P, Khumkratok S, Jong-aramruang J, Tip-pyang S. Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fitoterapia 2010;81:830–3.10.1016/j.fitote.2010.05.004Suche in Google Scholar PubMed

22. Hirshfeld HL. Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 1977;44:129–38.10.1007/BF00549096Suche in Google Scholar

23. Spackman MA, Jayatilaka D. Hirshfeld surface analysis. Cryst Eng Comm 2009;11:19–32.10.1039/B818330ASuche in Google Scholar

24. Do Nascimento PG, Lemos TL, Bizerra AM, Arriaga ÂM, Ferreira DA, Santiago GM, et al. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 2014;19:1317–27.10.3390/molecules19011317Suche in Google Scholar PubMed PubMed Central

25. Mobley HL, Island MD, Hausinger RP. Molecular biology of microbial ureases. Microbiol Rev 1995;59:451–80.10.1128/mr.59.3.451-480.1995Suche in Google Scholar PubMed PubMed Central

26. Ahmad I, Fatima I, Afza N, Malik A, Lodhi MA, Choudhary MI. Urease and serine protease inhibitory alkaloids from Isatis tinctoria. J Enzyme Inhib Med Chem 2008;23:918–21.10.1080/14756360701743580Suche in Google Scholar PubMed

27. Hussain J, Khan H, Ali L, Khan AL, Ur Rehman N, Jahangir S, et al. A new indole alkaloid from cleome droserifolia. Helv Chim Acta 2015;98:719–23.10.1002/hlca.201400314Suche in Google Scholar

28. Modolo LV, De Souza AX, Horta LP, Araujo DP, De Fátima A. An overview on the potential of natural products as ureases inhibitors: a review. J Adv Res 2015;6:35–44.10.1016/j.jare.2014.09.001Suche in Google Scholar PubMed PubMed Central

29. Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci 2009;10:2440–75.10.3390/ijms10062440Suche in Google Scholar PubMed PubMed Central

30. Sheldrick GM. A short history of SHELX. Acta Crystallogr 2008;A64:112–22.10.1107/S0108767307043930Suche in Google Scholar PubMed

31. Wolff S, Grimwood D, McKinnon J, Turner M, Jayatilaka D, Spackman M. Crystal explorer. Perth, Australia: The University of Western Australia, 2012.Suche in Google Scholar

32. Gulcin I, Alici HA, Cesur M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem Pharm Bull 2005;53:281–5.10.1248/cpb.53.281Suche in Google Scholar PubMed

33. Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 1967;39:971–4.10.1021/ac60252a045Suche in Google Scholar

34. Hearing VJ. Methods in enzymology. New York: Academic Press, 1987.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znc-2017-0127).


Received: 2017-07-12
Revised: 2017-11-02
Accepted: 2017-11-30
Published Online: 2018-01-10
Published in Print: 2018-09-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Research Articles
  3. Diverse bioactive compounds from Sarcophtyton glaucom: structure elucidation and cytotoxic activity studies
  4. Pobeguinine: a monoterpene indole alkaloid and other bioactive constituents from the stem bark of Nauclea pobeguinii
  5. Why is the hydrolytic activity of acetylcholinesterase pH dependent? Kinetic study of acetylcholine and acetylthiocholine hydrolysis catalyzed by acetylcholinesterase from electric eel
  6. Evaluation of Lavandula stoechas L. subsp. stoechas L., Mentha spicata L. subsp. spicata L. essential oils and their main components against sinusitis pathogens
  7. Screening of the five different wild, traditional and industrial Saccharomyces cerevisiae strains to overproduce bioethanol in the batch submerged fermentation
  8. The effects of inulin and fructo-oligosaccharide on the probiotic properties of Lactobacillus spp. isolated from human milk
  9. A proteomics analysis of adventitious root formation after leaf removal in lotus (Nelumbo nucifera Gaertn.)
  10. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells
  11. Antimalarial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum
  12. Rapid-communication
  13. Bioactive compounds from bay leaves (Laurus nobilis) extracted by microwave technology
  14. Erratum
  15. Erratum to: Transcriptome profiling reveals an IAA-regulated response to adventitious root formation in lotus seedling
  16. Erratum to: A comparative proteomic analysis for adventitious root formation in lotus root (Nelumbo nucifera Gaertn)
Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2017-0127/pdf
Button zum nach oben scrollen