Startseite Naturwissenschaften Synthesis, crystal structures and third-order nonlinear optical properties of Ni2+/Mn2+/Zn2+ naphthalene-1,5-disulfonates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, crystal structures and third-order nonlinear optical properties of Ni2+/Mn2+/Zn2+ naphthalene-1,5-disulfonates

  • Zhaoxun Lian EMAIL logo und Ning Zhao
Veröffentlicht/Copyright: 15. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, we present the synthesis and characterization of three transition metal 1,5-naphthalenedisulfonates: [Ni(PTP)₂]·(1,5-NDS)·2H₂O (1), [Mn(PTP)(1,5-NDS)] (2), and [Zn(PTP)(1,5-NDS)(H₂O)]2·2.5H₂O (3). Herein, PTP refers to 4′-phenyl-2,2′:6′,2″-terpyridine while 1,5-NDS denotes the naphthalene-1,5-disulfonate dianion. Compound 1 exhibits a structure in which the sulfonate groups of the 1,5-naphthalenedisulfonate anions are not engaged in coordination. In compound 2, the Mn(II) ions are interconnected through 1,5-NDS anions to form chains along the c axis. Compound 3 features a chain structure via coordination interactions between the metal cations and the 1,5-naphthalenedisulfonate anions; adjacent chains are linked by hydrogen bonds to create a double-chain arrangement. Solid diffuse reflection spectra reveal that these compounds exhibit maximum absorption around 290 nm. The third-order nonlinear optical (NLO) properties of these complexes was investigated using the single-beam Z-scan techniques under laser irradiation at a wavelength of 532 nm. All three compounds demonstrate significant third-order nonlinear optical absorption effects with absorption coefficients of 1.85 × 10−5 m W−1 for compound 1, 1.12 × 10−5 m W−1 for compound 2 and 1.73 × 10−5 m W−1 for compound 3. The corresponding calculated values for third-order NLO susceptibility χ³ are 3.00 × 10⁻7 esu, 1.81 × 10⁻7 esu and 2.80 × 10⁻7 esu, respectively.


Corresponding author: Zhaoxun Lian, School of Science, Kaili University, Kaiyuan Rd., Kaili City 556011, Guizhou Province, P.R. China, E-mail:

Funding source: High-Level Talent Program of Kaili University

Award Identifier / Grant number: BS20240205

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: The work was financially supported by High-Level Talent Program of Kaili University (No. BS20240205).

  7. Data availability: Not applicable.

References

1. Panicker, R. R.; Sivaramakrishna, A. Coord. Chem. Rev. 2002, 459, 214426 (93 pages); https://doi.org/10.1016/j.ccr.2022.214426.Suche in Google Scholar

2. Momeni, B. Z.; Davarzani, N.; Janczak, J.; Ma, N.; Abd-El-Aziz, A. S. Coord. Chem. Rev. 2024, 506, 215619 (70 pages); https://doi.org/10.1016/j.ccr.2023.215619.Suche in Google Scholar

3. Wei, C.; He, Y.; Shi, X.; Song, Z. Coord. Chem. Rev. 2019, 385, 1–19; https://doi.org/10.1016/j.ccr.2019.01.005.Suche in Google Scholar PubMed PubMed Central

4. Chakraborty, S.; Newkome, G. R. Chem. Soc. Rev. 2018, 47, 3991–4016; https://doi.org/10.1039/c8cs00030a.Suche in Google Scholar PubMed

5. Ye, Y. X.; Ma, Z. L.; Lin, R. B.; Krishna, R.; Zhou, W.; Lin, Q. J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. J. Am. Chem. Soc. 2019, 141, 4130–4136; https://doi.org/10.1021/jacs.9b00232.Suche in Google Scholar PubMed PubMed Central

6. Côté, A. P.; Shimizu, G. K. H. Chem. Commun. 2001, 251–252; https://doi.org/10.1039/b005923o.Suche in Google Scholar

7. Yu, J. Q.; Côté, A. P.; Enright, G. D.; Shimizu, G. K. H. Inorg. Chem. 2001, 40, 582–583; https://doi.org/10.1021/ic000733k.Suche in Google Scholar PubMed

8. Mäkinen, S. K.; Melcer, N. J.; Parve, M.; Shimizu, G. K. H. Chem. Eur. J. 2001, 7, 5176–5182.10.1002/1521-3765(20011203)7:23<5176::AID-CHEM5176>3.0.CO;2-1Suche in Google Scholar

9. Côté, A. P.; Ferguson, M. J.; Khan, K. A.; Enright, G. D.; Kulynych, A. D.; Dalrymple, S. A.; Shimizu, G. K. H. Inorg. Chem. 2002, 41, 287–292; https://doi.org/10.1021/ic010800q.Suche in Google Scholar

10. Côté, A. P.; Shimizu, G. K. H. Inorg. Chem. 2004, 43, 6663–6673; https://doi.org/10.1021/ic0491229.Suche in Google Scholar

11. Côté, A. P.; Shimizu, G. K. H. Chem. Eur. J. 2003, 9, 5361–5370; https://doi.org/10.1002/chem.200305102.Suche in Google Scholar PubMed

12. Smith, G.; Cloutt, B. A.; Lynch, D. E.; Byriel, K. A.; Kennard, C. H. L. Inorg. Chem. 1998, 37, 3236–3242; https://doi.org/10.1021/ic9706461.Suche in Google Scholar

13. Xie, Y. R.; Xiong, R. G.; Xue, X.; Chen, X. T.; Xue, Z. L.; You, X. Z. Inorg. Chem. 2002, 41, 3323–3326; https://doi.org/10.1021/ic010862g.Suche in Google Scholar PubMed

14. Lian, Z. X.; Jiang, K.; Lou, T. J. RSC Adv. 2015, 5, 82781–82788; https://doi.org/10.1039/c5ra14734d.Suche in Google Scholar

15. Zhao, N.; Deng, Y. E.; Liu, P.; An, C. X.; Wang, T. X.; Lian, Z. X. Transition Met. Chem. 2015, 40, 11–19; https://doi.org/10.1007/s11243-014-9884-z.Suche in Google Scholar

16. Liu, R. Q.; Zhao, N.; Yang, F. X.; Wang, A. R.; Liu, P.; An, C. X.; Lian, Z. X. Transition Met. Chem. 2016, 41, 721–730; https://doi.org/10.1007/s11243-016-0074-z.Suche in Google Scholar

17. Liu, R. Q.; Zhao, N.; Yang, F. X.; Wang, A. R.; Liu, P.; An, C. X.; Lian, Z. X. Polyhedron 2016, 111, 16–25; https://doi.org/10.1016/j.poly.2016.03.015.Suche in Google Scholar

18. Lian, Z. X.; Jiang, K.; Lou, T. J.; Zhao, N.; Liu, P.; An, C. X. J. Cluster. Sci. 2017, 28, 1509–1521; https://doi.org/10.1007/s10876-017-1161-9.Suche in Google Scholar

19. Lian, Z. X.; Zhao, N.; Liu, P.; An, C. X.; Yang, F. X.; Wang, A. R. Z. Naturforsch. 2017, 72b, 125–131.10.1515/znb-2016-0209Suche in Google Scholar

20. Lian, Z. X.; Zhao, N.; Liu, P.; An, C. X.; Wang, A. R.; Yang, F. X. Cryst. Eng. Comm. 2018, 20, 5833–5843; https://doi.org/10.1039/c8ce01283k.Suche in Google Scholar

21. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

22. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

23. Singh, N.; Singh, U. P.; Butcher, R. J. Cryst. Eng. Comm. 2017, 19, 7009–7020; https://doi.org/10.1039/c7ce01453h.Suche in Google Scholar

24. Moi, R.; Ghorai, A.; Banerjee, S.; Biradha, K. Cryst. Growth Des. 2020, 20, 5557–5563; https://doi.org/10.1021/acs.cgd.0c00732.Suche in Google Scholar

25. Ma, Z.; Cao, Y.; Li, Q.; Guedes da Silva, M. F. C.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L. J. Inorg. Biochem. 2010, 104, 704–711; https://doi.org/10.1016/j.jinorgbio.2010.03.002.Suche in Google Scholar PubMed

26. Ma, Z.; Wei, L.; Alegria, E. C. B. A.; Martins, L. M. D. R. S.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Dalton Trans. 2014, 43, 4048–4058; https://doi.org/10.1039/c3dt53054j.Suche in Google Scholar PubMed

27. Bahae, M. S.; Said, A. A.; Wei, T.-H.; Hagan, D. J.; Van Stryland, E. W. IEEE J. Quantum Electron. 1990, 26, 760–769; https://doi.org/10.1109/3.53394.Suche in Google Scholar

28. Liu, Q.; Zhang, W. H.; Lang, J. P. Coord. Chem. Rev. 2017, 350, 248–274; https://doi.org/10.1016/j.ccr.2017.06.027.Suche in Google Scholar

29. Li, L. K.; Chen, B. Y.; Song, Y. L.; Li, G.; Hou, H. W.; Fan, Y. T.; Mi, L. W. Inorg. Chim. Acta 2003, 344, 95–101; https://doi.org/10.1016/s0020-1693(02)01316-6.Suche in Google Scholar

30. Xiao, B.; Han, H. Y.; Meng, X. R.; Song, Y. L.; Fan, Y. T.; Hou, H. W.; Zhu, Y. Inorg. Chem. Commun. 2004, 7, 378–381; https://doi.org/10.1016/j.inoche.2003.12.019.Suche in Google Scholar

31. Hou, H. W.; Meng, X. R.; Song, Y. L.; Fan, Y. T.; Zhu, Y.; Lu, H. J.; Du, C. X.; Shao, W. H. Inorg. Chem. 2002, 41, 4068–4075; https://doi.org/10.1021/ic0255858.Suche in Google Scholar PubMed

32. Meng, X. R.; Li, J. P.; Hou, H. W.; Song, Y. L.; Fan, Y. T.; Zhu, Y. J. Mol. Struct. 2008, 891, 305–311; https://doi.org/10.1016/j.molstruc.2008.03.058.Suche in Google Scholar

33. Zhou, W.; Meng, X. R.; Ding, Y. N.; Li, W. Q.; Hou, H. W.; Song, Y. L.; Fan, Y. T. J. Mol. Struct. 2009, 937, 100–106; https://doi.org/10.1016/j.molstruc.2009.08.022.Suche in Google Scholar

34. Yadav, P.; Sharma, A. J. Electron. Mater. 2015, 44, 916–921; https://doi.org/10.1007/s11664-014-3577-4.Suche in Google Scholar

35. Wang, Y.; Cheng, L. T. J. Phys. Chem. 1992, 96, 1530–1532; https://doi.org/10.1021/j100183a007.Suche in Google Scholar

36. Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A. Appl. Phys. A 2014, 114, 315–321; https://doi.org/10.1007/s00339-013-8134-0.Suche in Google Scholar

Received: 2024-10-27
Accepted: 2024-11-24
Published Online: 2025-01-15
Published in Print: 2025-03-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0092/html?lang=de
Button zum nach oben scrollen