Abstract
Solvochemical syntheses attempts to obtain fluoride oxidotungstates of yttrium and holmium yielded coarse single crystals of Y2WO6 and Ho2WO6. Both compounds crystallize isotypically in the monoclinic space group C2/c (a ≈ 1621, b ≈ 1100, c ≈ 535 pm; β ≈ 107.5°) with eight formula units per unit cell. The crystal structure contains three crystallographically distinguishable rare earth metal cations, which all exhibit a coordination number of eight in shapes between twisted tetragonal prisms and trigonal dodecahedra. The hexavalent tungsten cations are surrounded by five of the six crystallographically different oxide anions forming isolated, i.e. non-condensed, trigonal bipyramids that show a very strong distortion. The sixth oxygen atom is tetrahedrally coordinated by rare earth metal (RE) cations with the resulting [ORE4] tetrahedra building up
Acknowledgments
The authors thank Dr. Falk Lissner for the single-crystal X-ray measurements and the state of Baden-Württemberg (Stuttgart, Germany) for financial support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: TS was responsible for the synthesis and the crystal structure analysis of the compounds, IH provided supervision, conceptionalized and finalized the publication.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no conflict of interest.
-
Research funding: None declared.
-
Data availability: Data are available upon request with the corresponding author.
References
1. Templeton, D. H.; Zalkin, A. Crystal Structure of Europium Tungstate. Acta Crystallogr. 1963, 16, 762–766; https://doi.org/10.1107/s0365110x63001985.Search in Google Scholar
2. Gaertner, M.; Abeln, D.; Pring, A.; Wilde, M.; Reller, A. Synthesis, Structure and Reactivity of Novel Lanthanum Tungstates. J. Solid State Chem. 1994, 111, 128–133; https://doi.org/10.1006/jssc.1994.1207.Search in Google Scholar
3. Gressling, T.; Müller-Buschbaum, H. Zur Kristallstruktur von Ce2(WO4)3. Z. Naturforsch. 1995, 50b, 1513–1516.10.1515/znb-1995-1013Search in Google Scholar
4. Shen, R.; Wang, C.; Wang, T. M.; Dong, C.; Chen, X. L.; Liang, J. K. Crystal Structures of Dy2(WO4)3 and GdY(WO4)3. Rare Met. (Beijing, China) 2003, 22, 49–54.Search in Google Scholar
5. Weil, M.; Stöger, B.; Aleksandrov, L. Nd2(WO4)3. Acta Crystallogr. 2009, E65, i45; https://doi.org/10.1107/s1600536809018108.Search in Google Scholar
6. Sabalisck, N. P.; López-Solano, J.; Guzmán-Afonso, C.; Santamaría-Pérez, D.; González-Silgo, C.; Mujica, A.; Muñoz, A.; Rodríguez-Hernández, P.; Radescu, S.; Vendrell, X.; Mestres, L.; Sans, J. A.; Manjón, F. J. Effect of Pressure on La2(WO4)3 with a Modulated Scheelite-type Structure. Phys. Rev. B 2014, 89, 174112 (11 pages); https://doi.org/10.1103/physrevb.89.174112.Search in Google Scholar
7. Damascena dos Passos, R. H.; Pereira de Souza, C.; Bernard-Nicod, C.; Leroux, C.; Arab, M. Structural and Electrical Properties of Cerium Tungstate: Application to Methane Conversion. Ceram. Int. 2020, 46, 8021–8030; https://doi.org/10.1016/j.ceramint.2019.12.026.Search in Google Scholar
8. Popov, V. V.; Menushenkov, A. P.; Yastrebtsev, A. A.; Rudakov, S. G.; Ivanov, A. A.; Gaynanov, B. R.; Svetogorov, R. D.; Khramov, E. V.; Zubavichus, Y. V.; Molokova, A. Y.; Tsarenko, N. A.; Ognevskaya, N. V.; Seregina, O. N.; Rachenok, I. G.; Shchetinin, I. V.; Ponkratov, K. V. Multiscale Study on the Formation and Evolution of the Crystal and Local Structures in Lanthanide Tungstates Ln2(WO4)3. J. Alloys Compd. 2022, 910, 164922 (13 pages); https://doi.org/10.1016/j.jallcom.2022.164922.Search in Google Scholar
9. Woodcock, D. A.; Lightfoot, P.; Ritter, C. Negative Thermal Expansion in Y2(WO4)3. J. Solid State Chem. 2000, 149, 92–98; https://doi.org/10.1006/jssc.1999.8502.Search in Google Scholar
10. Abrahams, S. C.; Bernstein, J. L. Crystal Structure of the Transition-Metal Molybdates and Tungstates. II. Diamagnetic Sc2(WO4)3. J. Chem. Phys. 1966, 45, 2745–2752; https://doi.org/10.1063/1.1728021.Search in Google Scholar
11. Laligant, Y.; Le Bail, A.; Goutenoire, F. Ab Initio Structure Determination of Lanthanum Cyclo-Tetratungstate-(La2W2O9) from X-Ray and Neutron Powder Diffraction Data. J. Solid State Chem. 2001, 159, 223–227; https://doi.org/10.1006/jssc.2001.9189.Search in Google Scholar
12. Borisov, S. V.; Klevtsova, R. F. The Crystal Structure of Pr2W2O9. Kristallografiya 1970, 15, 38–42.Search in Google Scholar
13. Held, P.; Becker, P. Dineodymium(III)Ditungstate(VI), Nd2W2O9. Acta Crystallogr. 2008, E64, i29; https://doi.org/10.1107/s1600536808009914.Search in Google Scholar PubMed PubMed Central
14. Chambrier, M. H.; Kodjikan, S.; Ibberson, R. M.; Goutenoire, F. Ab-initio Structure Calculation of β-La2WO6. J. Solid State Chem. 2009, 182, 209–214.10.1016/j.jssc.2008.09.010Search in Google Scholar
15. Allix, M.; Chambrier, M. H.; Veron, E.; Porcher, F.; Suchomel, M.; Goutenoire, F. Synthesis and Structure Determination of the High Temperature Form of La2WO6. Cryst. Growth Des. 2011, 11, 5105–5112; https://doi.org/10.1021/cg201010y.Search in Google Scholar
16. Tyulin, A. V.; Efremov, V. A.; Trunov, V. K. Polymorphism of Oxytungstates TR2WO6. Mechanisms of Structural Changes in Y2WO6. Kristallografiya 1989, 34, 885–892.Search in Google Scholar
17. Efremov, V. A.; Tyulin, A. V.; Trunov, V. K. The Structure of a New Modification of Nd2WO6. Kristallografiya 1984, 29, 673–676.Search in Google Scholar
18. Tyulin, A. V.; Efremov, V. A. Polymorphism of Oyxtungstates Tr2WO6. Analysis of Structural Type II (Gd2WO6 and Gd2MoO6). Mechanism of Structural Change in Gd2WO6 in the Phase Transition II. Kristallografiya 1987, 32, 371–377.Search in Google Scholar
19. Tyulin, A. V.; Efremov, V. A. Polymorphism of Oxytungstates Tr2WO6. Mechanism of Structural Changes of Er2WO6. Kristallografiya 1987, 32, 363–370.Search in Google Scholar
20. Dorn, K. V.; Schleid, Th.; Hartenbach, I. Synthesis and Crystal Structure of Dy2WO6. Z. Kristallogr. 2016, Suppl. 36, 85–86.Search in Google Scholar
21. Tyulin, A. V.; Efremov, V. A.; Trunov, V. K. The Crystal Structure of Orthorhombic Er2WO6. Kristallografiya 1984, 29, 692–696.Search in Google Scholar
22. Efremov, V. A.; Tyulin, A. V.; Trunov, V. K.; Kudin, O. V.; Yanovskii, V. K.; Voronkova, V. I. The Crystal Structure of Monoclinic Y2WO6 and Yb2WO6. Kristallografiya 1984, 29, 904–909.Search in Google Scholar
23. Zhang, Z.; Zhang, H.; Duan, C. J.; Yuan, J. L.; Wang, X.; Xiong, D. B.; Chen, H. H.; Zhao, J. T. Structure Refinement of Lu2WO6 and Luminescent Properties of Eu3+, Pr3+ Doped Lu2WO6. J. Alloys Compd. 2008, 466, 258–263; https://doi.org/10.1016/j.jallcom.2007.11.050.Search in Google Scholar
24. Wang, X.; Feng, X.; Molokeev, M. S.; Zheng, H.; Wang, Q.; Xu, C.; Li, J.-G. Modulation of Bi3+ Luminescence from Broadband Green to Broadband Deep Red in Lu2WO6 by Gd3+ Doping and its Applications in High Color Rendering Index White LED and Near-Infrared LED. Dalton Trans. 2023, 52, 2619–2630; https://doi.org/10.1039/d2dt03751c.Search in Google Scholar PubMed
25. Beaury, O.; Faucher, M.; Teste de Sagey, G. The Structure of Yttrium Tungstate ε-Y2WO6. Acta Crystallogr. 1981, B37, 1166–1170; https://doi.org/10.1107/s0567740881005438.Search in Google Scholar
26. Polyanskaya, T. M.; Borisov, S. V.; Belov, N. V. A New Form of the Scheelite Structural Type: Crystal Structure of Nd2WO6. Dokl. Akad. Nauk SSSR 1970, 193, 83–86.Search in Google Scholar
27. Dorn, K. V.; Hartenbach, I. Press to Success: Gd5FW11O16 − the First Gadolinium(III) Fluoride Oxidotungstate(VI). Crystals 2019, 9 (12), 424; https://doi.org/10.3390/cryst9080424.Search in Google Scholar
28. Herrendorf, W.; Bärnighausen, H. HABITUS: Program for the Optimization of the Crystal Shape for Numerical Absorption Correction in X−SHAPE (version 1.06, STOE & Cie., Darmstadt (Germany), 1999): Karlsruhe, Gießen (Germany), 1993, 1996.Search in Google Scholar
29. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
30. Fischer, R. X.; Tillmanns, E. The Equivalent Isotropic Displacement Factor. Acta Crystallogr. 1988, C44, 775–776; https://doi.org/10.1107/s0108270187012745.Search in Google Scholar
31. Link, L.; Niewa, R. Polynator: a Tool to Identify and Quantitatively Evaluate Polyhedra and Other Shapes in Crystal Structures. J. Appl. Crystallogr. 2023, 56, 1855–1864; https://doi.org/10.1107/s1600576723008476.Search in Google Scholar
32. Berry, R. S. Correlation of Rates of Intramolecular Tunneling Processes, with Application to Some Group V Compounds. J. Chem. Phys. 1960, 32, 933–938; https://doi.org/10.1063/1.1730820.Search in Google Scholar
33. Zikmund, Z. The Crystal Structure of Ca3WO5Cl2 and the Configuration of the WO54− Ion. Acta Crystallogr. 1974, B30, 2587–2593.10.1107/S0567740874010934Search in Google Scholar
34. Betz, T.; Hoppe, R. Die Koordinationszahl 5 bei Wolframaten und Molybdaten: Über K4(WO5), K4(MoO5) und Rb4(WO5). J. Less-Common Met. 1985, 105, 87–104; https://doi.org/10.1016/0022-5088(85)90128-6.Search in Google Scholar
35. Nespolo, M. Charge Distribution as a Tool to Investigate Structural Details. IV. A New Route to Heteroligand Polyhedra. Acta Crystallogr. 2016, B72, 51–66; https://doi.org/10.1107/s2052520615019472.Search in Google Scholar
36. Nespolo, M.; Guillot, B. CHARDI2015: Charge Distribution Analysis of Non-molecular Structures. J. Appl. Crystallogr. 2016, 49, 317–321; https://doi.org/10.1107/s1600576715024814.Search in Google Scholar
37. Hoppe, R. On the Symbolic Language of the Chemist. Angew Chem. Int. Ed. Engl. 1980, 19, 110–125; https://doi.org/10.1002/anie.198001101.Search in Google Scholar
38. Hoppe, R. Effective Coordination Numbers (ECoN) and Mean Fictive Ionic Radii (MEFIR). Z. Kristallogr. 1979, 150, 23–52; https://doi.org/10.1524/zkri.1979.150.14.23.Search in Google Scholar
39. Hoppe, R. Madelung Constants as a New Guide in the Structural Chemistry of Solids. Adv. Fluorine Chem. 1970, 6, 387–438.Search in Google Scholar
40. Hoppe, R. The Madelung Part of Lattice Energy, MAPLE, as a Guide in the Structural Solid State Chemistry. Izv. Jugoslav. Centr. Krist. (Zagreb) 1973, 8, 21–36.Search in Google Scholar
41. Hoppe, R. The Madelung Part of Lattice Energy, MAPLE, as a Guide in Crystal Chemistry. In Crystal Structure and Chemical Bonding in Inorganic Chemistry; Rooymans, C. J. M.; Rabenau, A., Eds.; North Holland Publishers: Amsterdam, 1975; pp. 127–153.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Review
- Intermetallics from cadmium self-flux reactions
- Research Articles
- Take five: the isotypic structures of Y2WO6 and Ho2WO6 comprising non-condensed [WO5]4− units
- The lithium-rich stannide Li4Rh3Sn5
- Iridium-rich silicides RE 5Ir19Si12 (RE = Y, Gd–Dy, Er, Tm, Lu) with Sc5Co19P12-type structure
- A solution, X-ray crystallographic and theoretical study of acylhydrazonyl compounds: the influence of the NHCO arrangement on the structures of (E)-N′-benzylidene-2-(thiophen-2-yl)acetohydrazides
- Synthesis, crystal structures and third-order nonlinear optical properties of Ni2+/Mn2+/Zn2+ naphthalene-1,5-disulfonates
- Rutile-type Ni–TiO2 nanocrystals with Ni-induced p-type channels for enhanced photocatalytic degradation of organic pollutants
- Syntheses, molecular structures and properties of (Ph4P)2[trans-O2RuCl4]·CH2Cl2 and [(Ph3P)2N]2[trans-O2RuCl4]·CH2Cl2
Articles in the same Issue
- Frontmatter
- In this issue
- Review
- Intermetallics from cadmium self-flux reactions
- Research Articles
- Take five: the isotypic structures of Y2WO6 and Ho2WO6 comprising non-condensed [WO5]4− units
- The lithium-rich stannide Li4Rh3Sn5
- Iridium-rich silicides RE 5Ir19Si12 (RE = Y, Gd–Dy, Er, Tm, Lu) with Sc5Co19P12-type structure
- A solution, X-ray crystallographic and theoretical study of acylhydrazonyl compounds: the influence of the NHCO arrangement on the structures of (E)-N′-benzylidene-2-(thiophen-2-yl)acetohydrazides
- Synthesis, crystal structures and third-order nonlinear optical properties of Ni2+/Mn2+/Zn2+ naphthalene-1,5-disulfonates
- Rutile-type Ni–TiO2 nanocrystals with Ni-induced p-type channels for enhanced photocatalytic degradation of organic pollutants
- Syntheses, molecular structures and properties of (Ph4P)2[trans-O2RuCl4]·CH2Cl2 and [(Ph3P)2N]2[trans-O2RuCl4]·CH2Cl2