Home Physical Sciences Take five: the isotypic structures of Y2WO6 and Ho2WO6 comprising non-condensed [WO5]4− units
Article
Licensed
Unlicensed Requires Authentication

Take five: the isotypic structures of Y2WO6 and Ho2WO6 comprising non-condensed [WO5]4− units

  • Ingo Hartenbach EMAIL logo and Tanja Schustereit
Published/Copyright: March 14, 2025
Become an author with De Gruyter Brill

Abstract

Solvochemical syntheses attempts to obtain fluoride oxidotungstates of yttrium and holmium yielded coarse single crystals of Y2WO6 and Ho2WO6. Both compounds crystallize isotypically in the monoclinic space group C2/c (a ≈ 1621, b ≈ 1100, c ≈ 535 pm; β ≈ 107.5°) with eight formula units per unit cell. The crystal structure contains three crystallographically distinguishable rare earth metal cations, which all exhibit a coordination number of eight in shapes between twisted tetragonal prisms and trigonal dodecahedra. The hexavalent tungsten cations are surrounded by five of the six crystallographically different oxide anions forming isolated, i.e. non-condensed, trigonal bipyramids that show a very strong distortion. The sixth oxygen atom is tetrahedrally coordinated by rare earth metal (RE) cations with the resulting [ORE4] tetrahedra building up 1 { [ O R E 2 2 / 4 R E 3 2 / 2 ] 2.5 + } bands along [001]. These bands are arranged according to a hexagonal rod packing with the (RE1)3+ cations and the [WO5]4− anions being situated between them.


Corresponding author: Ingo Hartenbach, Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, E-mail:
Dedicated to Professor Hans-Jörg Deiseroth on the Occasion of his 80th Birthday.

Acknowledgments

The authors thank Dr. Falk Lissner for the single-crystal X-ray measurements and the state of Baden-Württemberg (Stuttgart, Germany) for financial support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: TS was responsible for the synthesis and the crystal structure analysis of the compounds, IH provided supervision, conceptionalized and finalized the publication.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Data are available upon request with the corresponding author.

References

1. Templeton, D. H.; Zalkin, A. Crystal Structure of Europium Tungstate. Acta Crystallogr. 1963, 16, 762–766; https://doi.org/10.1107/s0365110x63001985.Search in Google Scholar

2. Gaertner, M.; Abeln, D.; Pring, A.; Wilde, M.; Reller, A. Synthesis, Structure and Reactivity of Novel Lanthanum Tungstates. J. Solid State Chem. 1994, 111, 128–133; https://doi.org/10.1006/jssc.1994.1207.Search in Google Scholar

3. Gressling, T.; Müller-Buschbaum, H. Zur Kristallstruktur von Ce2(WO4)3. Z. Naturforsch. 1995, 50b, 1513–1516.10.1515/znb-1995-1013Search in Google Scholar

4. Shen, R.; Wang, C.; Wang, T. M.; Dong, C.; Chen, X. L.; Liang, J. K. Crystal Structures of Dy2(WO4)3 and GdY(WO4)3. Rare Met. (Beijing, China) 2003, 22, 49–54.Search in Google Scholar

5. Weil, M.; Stöger, B.; Aleksandrov, L. Nd2(WO4)3. Acta Crystallogr. 2009, E65, i45; https://doi.org/10.1107/s1600536809018108.Search in Google Scholar

6. Sabalisck, N. P.; López-Solano, J.; Guzmán-Afonso, C.; Santamaría-Pérez, D.; González-Silgo, C.; Mujica, A.; Muñoz, A.; Rodríguez-Hernández, P.; Radescu, S.; Vendrell, X.; Mestres, L.; Sans, J. A.; Manjón, F. J. Effect of Pressure on La2(WO4)3 with a Modulated Scheelite-type Structure. Phys. Rev. B 2014, 89, 174112 (11 pages); https://doi.org/10.1103/physrevb.89.174112.Search in Google Scholar

7. Damascena dos Passos, R. H.; Pereira de Souza, C.; Bernard-Nicod, C.; Leroux, C.; Arab, M. Structural and Electrical Properties of Cerium Tungstate: Application to Methane Conversion. Ceram. Int. 2020, 46, 8021–8030; https://doi.org/10.1016/j.ceramint.2019.12.026.Search in Google Scholar

8. Popov, V. V.; Menushenkov, A. P.; Yastrebtsev, A. A.; Rudakov, S. G.; Ivanov, A. A.; Gaynanov, B. R.; Svetogorov, R. D.; Khramov, E. V.; Zubavichus, Y. V.; Molokova, A. Y.; Tsarenko, N. A.; Ognevskaya, N. V.; Seregina, O. N.; Rachenok, I. G.; Shchetinin, I. V.; Ponkratov, K. V. Multiscale Study on the Formation and Evolution of the Crystal and Local Structures in Lanthanide Tungstates Ln2(WO4)3. J. Alloys Compd. 2022, 910, 164922 (13 pages); https://doi.org/10.1016/j.jallcom.2022.164922.Search in Google Scholar

9. Woodcock, D. A.; Lightfoot, P.; Ritter, C. Negative Thermal Expansion in Y2(WO4)3. J. Solid State Chem. 2000, 149, 92–98; https://doi.org/10.1006/jssc.1999.8502.Search in Google Scholar

10. Abrahams, S. C.; Bernstein, J. L. Crystal Structure of the Transition-Metal Molybdates and Tungstates. II. Diamagnetic Sc2(WO4)3. J. Chem. Phys. 1966, 45, 2745–2752; https://doi.org/10.1063/1.1728021.Search in Google Scholar

11. Laligant, Y.; Le Bail, A.; Goutenoire, F. Ab Initio Structure Determination of Lanthanum Cyclo-Tetratungstate-(La2W2O9) from X-Ray and Neutron Powder Diffraction Data. J. Solid State Chem. 2001, 159, 223–227; https://doi.org/10.1006/jssc.2001.9189.Search in Google Scholar

12. Borisov, S. V.; Klevtsova, R. F. The Crystal Structure of Pr2W2O9. Kristallografiya 1970, 15, 38–42.Search in Google Scholar

13. Held, P.; Becker, P. Dineodymium(III)Ditungstate(VI), Nd2W2O9. Acta Crystallogr. 2008, E64, i29; https://doi.org/10.1107/s1600536808009914.Search in Google Scholar PubMed PubMed Central

14. Chambrier, M. H.; Kodjikan, S.; Ibberson, R. M.; Goutenoire, F. Ab-initio Structure Calculation of β-La2WO6. J. Solid State Chem. 2009, 182, 209–214.10.1016/j.jssc.2008.09.010Search in Google Scholar

15. Allix, M.; Chambrier, M. H.; Veron, E.; Porcher, F.; Suchomel, M.; Goutenoire, F. Synthesis and Structure Determination of the High Temperature Form of La2WO6. Cryst. Growth Des. 2011, 11, 5105–5112; https://doi.org/10.1021/cg201010y.Search in Google Scholar

16. Tyulin, A. V.; Efremov, V. A.; Trunov, V. K. Polymorphism of Oxytungstates TR2WO6. Mechanisms of Structural Changes in Y2WO6. Kristallografiya 1989, 34, 885–892.Search in Google Scholar

17. Efremov, V. A.; Tyulin, A. V.; Trunov, V. K. The Structure of a New Modification of Nd2WO6. Kristallografiya 1984, 29, 673–676.Search in Google Scholar

18. Tyulin, A. V.; Efremov, V. A. Polymorphism of Oyxtungstates Tr2WO6. Analysis of Structural Type II (Gd2WO6 and Gd2MoO6). Mechanism of Structural Change in Gd2WO6 in the Phase Transition II. Kristallografiya 1987, 32, 371–377.Search in Google Scholar

19. Tyulin, A. V.; Efremov, V. A. Polymorphism of Oxytungstates Tr2WO6. Mechanism of Structural Changes of Er2WO6. Kristallografiya 1987, 32, 363–370.Search in Google Scholar

20. Dorn, K. V.; Schleid, Th.; Hartenbach, I. Synthesis and Crystal Structure of Dy2WO6. Z. Kristallogr. 2016, Suppl. 36, 85–86.Search in Google Scholar

21. Tyulin, A. V.; Efremov, V. A.; Trunov, V. K. The Crystal Structure of Orthorhombic Er2WO6. Kristallografiya 1984, 29, 692–696.Search in Google Scholar

22. Efremov, V. A.; Tyulin, A. V.; Trunov, V. K.; Kudin, O. V.; Yanovskii, V. K.; Voronkova, V. I. The Crystal Structure of Monoclinic Y2WO6 and Yb2WO6. Kristallografiya 1984, 29, 904–909.Search in Google Scholar

23. Zhang, Z.; Zhang, H.; Duan, C. J.; Yuan, J. L.; Wang, X.; Xiong, D. B.; Chen, H. H.; Zhao, J. T. Structure Refinement of Lu2WO6 and Luminescent Properties of Eu3+, Pr3+ Doped Lu2WO6. J. Alloys Compd. 2008, 466, 258–263; https://doi.org/10.1016/j.jallcom.2007.11.050.Search in Google Scholar

24. Wang, X.; Feng, X.; Molokeev, M. S.; Zheng, H.; Wang, Q.; Xu, C.; Li, J.-G. Modulation of Bi3+ Luminescence from Broadband Green to Broadband Deep Red in Lu2WO6 by Gd3+ Doping and its Applications in High Color Rendering Index White LED and Near-Infrared LED. Dalton Trans. 2023, 52, 2619–2630; https://doi.org/10.1039/d2dt03751c.Search in Google Scholar PubMed

25. Beaury, O.; Faucher, M.; Teste de Sagey, G. The Structure of Yttrium Tungstate ε-Y2WO6. Acta Crystallogr. 1981, B37, 1166–1170; https://doi.org/10.1107/s0567740881005438.Search in Google Scholar

26. Polyanskaya, T. M.; Borisov, S. V.; Belov, N. V. A New Form of the Scheelite Structural Type: Crystal Structure of Nd2WO6. Dokl. Akad. Nauk SSSR 1970, 193, 83–86.Search in Google Scholar

27. Dorn, K. V.; Hartenbach, I. Press to Success: Gd5FW11O16 − the First Gadolinium(III) Fluoride Oxidotungstate(VI). Crystals 2019, 9 (12), 424; https://doi.org/10.3390/cryst9080424.Search in Google Scholar

28. Herrendorf, W.; Bärnighausen, H. HABITUS: Program for the Optimization of the Crystal Shape for Numerical Absorption Correction in X−SHAPE (version 1.06, STOE & Cie., Darmstadt (Germany), 1999): Karlsruhe, Gießen (Germany), 1993, 1996.Search in Google Scholar

29. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

30. Fischer, R. X.; Tillmanns, E. The Equivalent Isotropic Displacement Factor. Acta Crystallogr. 1988, C44, 775–776; https://doi.org/10.1107/s0108270187012745.Search in Google Scholar

31. Link, L.; Niewa, R. Polynator: a Tool to Identify and Quantitatively Evaluate Polyhedra and Other Shapes in Crystal Structures. J. Appl. Crystallogr. 2023, 56, 1855–1864; https://doi.org/10.1107/s1600576723008476.Search in Google Scholar

32. Berry, R. S. Correlation of Rates of Intramolecular Tunneling Processes, with Application to Some Group V Compounds. J. Chem. Phys. 1960, 32, 933–938; https://doi.org/10.1063/1.1730820.Search in Google Scholar

33. Zikmund, Z. The Crystal Structure of Ca3WO5Cl2 and the Configuration of the WO54− Ion. Acta Crystallogr. 1974, B30, 2587–2593.10.1107/S0567740874010934Search in Google Scholar

34. Betz, T.; Hoppe, R. Die Koordinationszahl 5 bei Wolframaten und Molybdaten: Über K4(WO5), K4(MoO5) und Rb4(WO5). J. Less-Common Met. 1985, 105, 87–104; https://doi.org/10.1016/0022-5088(85)90128-6.Search in Google Scholar

35. Nespolo, M. Charge Distribution as a Tool to Investigate Structural Details. IV. A New Route to Heteroligand Polyhedra. Acta Crystallogr. 2016, B72, 51–66; https://doi.org/10.1107/s2052520615019472.Search in Google Scholar

36. Nespolo, M.; Guillot, B. CHARDI2015: Charge Distribution Analysis of Non-molecular Structures. J. Appl. Crystallogr. 2016, 49, 317–321; https://doi.org/10.1107/s1600576715024814.Search in Google Scholar

37. Hoppe, R. On the Symbolic Language of the Chemist. Angew Chem. Int. Ed. Engl. 1980, 19, 110–125; https://doi.org/10.1002/anie.198001101.Search in Google Scholar

38. Hoppe, R. Effective Coordination Numbers (ECoN) and Mean Fictive Ionic Radii (MEFIR). Z. Kristallogr. 1979, 150, 23–52; https://doi.org/10.1524/zkri.1979.150.14.23.Search in Google Scholar

39. Hoppe, R. Madelung Constants as a New Guide in the Structural Chemistry of Solids. Adv. Fluorine Chem. 1970, 6, 387–438.Search in Google Scholar

40. Hoppe, R. The Madelung Part of Lattice Energy, MAPLE, as a Guide in the Structural Solid State Chemistry. Izv. Jugoslav. Centr. Krist. (Zagreb) 1973, 8, 21–36.Search in Google Scholar

41. Hoppe, R. The Madelung Part of Lattice Energy, MAPLE, as a Guide in Crystal Chemistry. In Crystal Structure and Chemical Bonding in Inorganic Chemistry; Rooymans, C. J. M.; Rabenau, A., Eds.; North Holland Publishers: Amsterdam, 1975; pp. 127–153.Search in Google Scholar

Received: 2025-01-24
Accepted: 2025-02-14
Published Online: 2025-03-14
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2025-0006/html
Scroll to top button