Home Synthesis and structural characterization of a luminescent cadmium(II) complex with bis(4-(1H-imidazole-1-yl)phenyl)amine and 4,4′-sulfonyldibenzoate ligands
Article
Licensed
Unlicensed Requires Authentication

Synthesis and structural characterization of a luminescent cadmium(II) complex with bis(4-(1H-imidazole-1-yl)phenyl)amine and 4,4′-sulfonyldibenzoate ligands

  • Cheng-Yan Huang EMAIL logo , Hai-Ou Zhang , Hong-Xia Han , Yi-Bing Liu and Qiong Xiao
Published/Copyright: April 13, 2022
Become an author with De Gruyter Brill

Abstract

A new coordination polymer {[Cd(BIPA)(DCPS)](H2O)} n (1) was constructed with bis(4-(1H-imidazole-1-yl)phenyl)amine and 4,4′-sulfonyldibenzoate ligands. The complex 1 features (BIPA–Cd–BIPA) n and (DCPS–Cd–DCPS) n helical chains in a 3D architecture assembled via hydrogen bonds. A spectroscopic study of complex 1 in the crystalline state showed an intense red-shifted photoluminescence as compared with the ligands BIPA and DCPS2−, which can be attributed to the ligand-to-metal charge transfer (LMCT) transitions.


Corresponding author: Cheng-Yan Huang, Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China, E-mail:

Funding source: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Award Identifier / Grant number: 20191230830

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by grant from Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, Grant No. 20191230830).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ryu, U., Jee, S., Rao, P. C., Shin, J., Ko, C., Yoon, M., Park, K. S., Choi, K. M. Coord. Chem. Rev. 2021, 426, 213544; https://doi.org/10.1016/j.ccr.2020.213544.Search in Google Scholar PubMed PubMed Central

2. Saraci, F., Quezada-Novoa, V., Donnarumma, P. R., Howarth, A. J. Chem. Soc. Rev. 2020, 49, 7949–7977; https://doi.org/10.1039/d0cs00292e.Search in Google Scholar PubMed

3. Zhao, Y.-L., Weng, Q.-Y., Xie, Y.-Q., Li, J.-M. Z. Naturforsch. 2022, 77b, 17–23; https://doi.org/10.1515/znb-2021-0106.Search in Google Scholar

4. Liu, Z.-Q., Liu, R.-R., Jin, H.-H., Lei, L.-W., Wang, Z.-P., Shi, L. Z. Naturforsch. 2022, 77b, 69–74; https://doi.org/10.1515/znb-2021-0155.Search in Google Scholar

5. Li, S., Wang, Y., Qi, C., Zhao, X., Zhang, J., Zhang, S., Pang, S. Angew. Chem. Int. Ed. 2013, 52, 14031–14035; https://doi.org/10.1002/anie.201307118.Search in Google Scholar PubMed

6. Zhang, Q., Shreeve, J. M. Angew. Chem. Int. Ed. 2014, 53, 2540–2542; https://doi.org/10.1002/anie.201310014.Search in Google Scholar PubMed

7. Wang, H., Shi, Z., Yang, J., Sun, T., Rungtaweevoranit, B., Lyu, H., Zhang, Y.-B., Yaghi, O. M. Angew. Chem. Int. Ed. 2021, 60, 3417–3421; https://doi.org/10.1002/anie.202015262.Search in Google Scholar PubMed

8. Li, Y.-Z., Wang, G.-D., Shi, W.-J., Hou, L., Wang, Y.-Y., Zhu, Z. ACS Appl. Mater. Interfaces 2020, 37, 41785–41793; https://doi.org/10.1021/acsami.0c12992.Search in Google Scholar PubMed

9. Dhakshinamoorthy, A., Asiri, A. M., Garcia, H. ChemCatChem 2020, 12, 4732–4753; https://doi.org/10.1002/cctc.202001188.Search in Google Scholar

10. Zhang, S., Ou, F., Ning, S., Cheng, P. Inorg. Chem. Front. 2021, 8, 1865–1899; https://doi.org/10.1039/d0qi01407a.Search in Google Scholar

11. Coronado, E. Nat. Rev. Mater. 2020, 5, 87–104; https://doi.org/10.1038/s41578-019-0146-8.Search in Google Scholar

12. Zheng, Y., Sun, F. Z., Han, X., Xu, J., Bu, X. H. Adv. Opt. Mater. 2020, 8, 2000110; https://doi.org/10.1002/adom.202000110.Search in Google Scholar

13. Zhang, M. D., Qiu, Y., Song, M. X., Ren, S., Huang, C. H., Chen, M. D. Mendeleev Commun. 2016, 26, 415–417; https://doi.org/10.1016/j.mencom.2016.09.017.Search in Google Scholar

14. Huang, C. Y., Wang, J., Ding, Z. Y., Cui, K. J. Mol. Struct. 2015, 1086, 118–124; https://doi.org/10.1016/j.molstruc.2015.01.020.Search in Google Scholar

15. Zhang, M. D., Zheng, B. H., Jiao, Y., Chen, M. D. Inorg. Chem. Commun. 2014, 46, 285–288; https://doi.org/10.1016/j.inoche.2014.06.026.Search in Google Scholar

16. Yao, X. Q., Cao, D. P., Hu, J. S., Li, Y. Z., Guo, Z. J., Zheng, H. G. Cryst. Growth Des. 2011, 11, 231–239; https://doi.org/10.1021/cg1011764.Search in Google Scholar

17. Zhang, M. D., Zheng, B. H., Wang, Z., Jiao, Y., Chen, M. D. J. Mol. Struct. 2014, 1076, 496–500; https://doi.org/10.1016/j.molstruc.2014.08.018.Search in Google Scholar

18. Zhang, M. D., Zhuang, Q. F., Xu, J., Cao, H. Crystallogr. Rep. 2015, 60, 1106–1100; https://doi.org/10.1134/s1063774515070172.Search in Google Scholar

19. Ren, S., Duan, X., Ge, F., Chen, Z., Yang, Q., Zhang, M., Zheng, H. Chem. Eng. J. 2022, 427, 131614; https://doi.org/10.1016/j.cej.2021.131614.Search in Google Scholar

20. Hu, Q., Liu, J.-L., Zheng, Q.-M., Chang, J.-F., Wu, L.-Z., Zhang, M.-D., Qin, L. Microporous Mesoporous Mater. 2021, 321, 111130; https://doi.org/10.1016/j.micromeso.2021.111130.Search in Google Scholar

21. Zhang, M.-D., Qin, L., Yang, H.-T., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. Cryst. Growth Des. 2013, 13, 1961–1969; https://doi.org/10.1021/cg3018612.Search in Google Scholar

22. Zhang, M. D., Dai, Q. B., Zheng, H. G., Chen, M. D., Dai, L. Adv. Mater. 2018, 30, 1705431; https://doi.org/10.1002/adma.201705431.Search in Google Scholar PubMed

23. Kea, C. H., Lee, H. M. CrystEngComm 2012, 14, 4157–4160; https://doi.org/10.1039/c2ce06634c.Search in Google Scholar

24. Choi, E. Y., Kwon, Y. U. Inorg. Chem. Commun. 2004, 7, 942–945; https://doi.org/10.1016/j.inoche.2004.06.005.Search in Google Scholar

25. Jiao, Y., Wang, Z., Qiu, Y., He, J. M., Chen, M. D. Crystallogr. Rep. 2015, 60, 1013–1018; https://doi.org/10.1134/s1063774515070317.Search in Google Scholar

26. Zhang, M. D., Jiao, Y., Li, J., Chen, M. D. Mendeleev Commun. 2015, 25, 65–66; https://doi.org/10.1016/j.mencom.2015.01.024.Search in Google Scholar

27. Zhang, M. D., Shi, Z. Z., Li, Y. L., Zheng, H. G., Ma, J. Dalton Trans. 2017, 46, 14779–14784; https://doi.org/10.1039/c7dt03205f.Search in Google Scholar PubMed

28. Zhang, M. D., Zheng, B. H., Liu, X., Huang, C. Y., Wang, B. Crystallogr. Rep. 2017, 62, 923–927; https://doi.org/10.1134/s106377451706027x.Search in Google Scholar

29. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

30. Sheldrick, G. M. Sadabs; Bruker AXS: Madison (Wisconsin, USA), 1996.Search in Google Scholar

Received: 2022-02-27
Accepted: 2022-03-20
Published Online: 2022-04-13
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0023/html?lang=en
Scroll to top button