Home Die Reihe der nicht-zentrosymmetrischen tetragonalen Lanthanoid(III)-Oxidoantimonat(III)-Chloride LnSb2O4Cl (Ln = Gd–Lu)
Article
Licensed
Unlicensed Requires Authentication

Die Reihe der nicht-zentrosymmetrischen tetragonalen Lanthanoid(III)-Oxidoantimonat(III)-Chloride LnSb2O4Cl (Ln = Gd–Lu)

  • Ralf J. C. Locke , Felix C. Goerigk and Thomas Schleid EMAIL logo
Published/Copyright: February 4, 2022
Become an author with De Gruyter Brill

Abstract

All representatives of the isotypic series LnSb2O4Cl (Ln = Gd–Lu) could be obtained as single crystals, which crystallize just like the prototypic YSb2O4Cl in the non-centrosymmetric tetragonal space group P4212. The steady decrease in lattice parameters from a = 781.08(4) pm and c = 881.47(6) pm for GdSb2O4Cl to a = 764.66(4) pm and c = 877.53(7) pm for LuSb2O4Cl reflect the consequences of the lanthanide contraction, as expected. The Ln 3+ cations reside in the surrounding of eight oxygen atoms arranged as square hemiprisms [LnO8]13−, which are linked by four of their coplanar edges to form layers according to 2 { [ L n O 8 / 2 e ] 5 } parallel to the (001) plane. The Sb3+ cations form ψ1-tetrahedral [SbO3]3– anions together with three oxygen atoms. Two of these anions are connected with additional Sb3+ cations, but the third one shows no extra connectivity. Four ψ1-tetrahedral [SbO3]3– units build an eight-membered ring 0 { [ Sb 4 O 8 ] 4 } . These isolated rings are arranged parallel to the (001) plane. Between the oxygen-connected triple layers of Ln 3+ and Sb3+ cations with the composition 2 { [ L n Sb 2 O 4 ] + } there are single layers of Cl anions, not connected strongly to any of the trications. Due to the presence of isolated cyclic [Sb4O8]4– anions, these lanthanoid(III) oxidoantimonate(III) chlorides LnSb2O4Cl (Z = 4) can also be described with the molecular formula Ln 2[Sb4O8]Cl2 (Ln = Gd–Lu) for Z = 2.


Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Deutschland, E-mail:

Widmung: Frau Professor Caroline Röhr zum 60. Geburtstag gewidmet.


Danksagung

Wir danken Herrn Dr. Falk Lissner (AOR, Universität Stuttgart) für die Einkristallmessungen und Herrn Dr. Klaus Locke (Robert Bosch GmbH, Reutlingen) für die Unterstützung bei der Auswertung des Raman-Spektrums.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Literatur

1. Milne, C. J., Lightfoot, P., Jorgensen, J. D., Short, S. J. Mater. Chem. 1995, 5, 1419–1421, https://doi.org/10.1039/jm9950501419.Search in Google Scholar

2. Schmidt, M., Oppermann, H. Z. Anorg. Allg. Chem. 1999, 625, 544–546, https://doi.org/10.1002/(sici)1521-3749(199904)625:4<544::aid-zaac544>3.0.co;2-z.10.1002/(SICI)1521-3749(199904)625:4<544::AID-ZAAC544>3.0.CO;2-ZSearch in Google Scholar

3. Schmidt, M., Oppermann, H., Henning, C., Henn, R. W., Gmelin, E., Söger, N. Z. Anorg. Allg. Chem. 2000, 626, 125–135, https://doi.org/10.1002/(sici)1521-3749(200001)626:1<125::aid-zaac125>3.0.co;2-s.10.1002/(SICI)1521-3749(200001)626:1<125::AID-ZAAC125>3.0.CO;2-SSearch in Google Scholar

4. Schmidt, M., Oppermann, H., Zhang-Preße, M., Gmelin, E., Schnelle, W., Söger, N., Binnewies, M. Z. Anorg. Allg. Chem. 2001, 627, 2105–2111, https://doi.org/10.1002/1521-3749(200109)627:9<2105::aid-zaac2105>3.0.co;2-n.10.1002/1521-3749(200109)627:9<2105::AID-ZAAC2105>3.0.CO;2-NSearch in Google Scholar

5. Goerigk, F. C., Schleid, Th. Z. Anorg. Allg. Chem. 2010, 645, 1079–1084.10.1002/zaac.201900139Search in Google Scholar

6. Goerigk, F. C. Doctoral Dissertation; Universität Stuttgart, Stuttgart, 2021.Search in Google Scholar

7. Goerigk, F. C., Paterlini, V., Dorn, K. V., Mudring, A.-V., Schleid, Th. Crystals 2020, 10, 1089–1112, https://doi.org/10.3390/cryst10121089.Search in Google Scholar

8. Locke, R. J. C. Master Thesis; Universität Stuttgart, Stuttgart, 2021.Search in Google Scholar

9. Locke, R. J. C., Goerigk, F. C., Schleid, Th. Z. Kristallogr. 2021, S41, 78–79.Search in Google Scholar

10. Locke, R. J. C., Goerigk, F. C., Schäfer, M. J., Höppe, H. A., Schleid, Th. Roy. Soc. Chem. Adv. 2022, 12, 640–647, https://doi.org/10.1039/d1ra08382a.Search in Google Scholar

11. Herrendorf, W., Bärnighausen, H. HABITUS: Program for the Optimisation of the Crystal Shape for Numerical Absorption Correction in X-Shape; Karlsruhe: Darmstadt, 1999. Version 1.06, Stoe (1993, Gießen, 1996).Search in Google Scholar

12. Sheldrick, G. M. Shelxs-97 and Shelxl-97: Programs for the Solution and Refinement of Crystal Structures from X-Ray Diffraction Data, 1997. Göttingen.Search in Google Scholar

13. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122, https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

14. Weil, M. Acta Crystallogr. 2019, E75, 26–29, https://doi.org/10.1107/s2056989018017310.Search in Google Scholar

15. Massa, W. Kristallstrukturbestimmung, 7. Auflage; Teubner-Verlag, Wiesbaden, 2011.10.1007/978-3-8348-8211-0Search in Google Scholar

16. Svensson, C. Acta Crystallogr. 1975, B31, 2016–2018, https://doi.org/10.1107/s0567740875006759.Search in Google Scholar

17. Pires, A. M., Davolos, M. R., Paiva-Santos, C. O., Berwerth Strucci, E., Flor, J. J. Solid State Chem. 2003, 171, 420–423, https://doi.org/10.1016/s0022-4596(02)00224-4.Search in Google Scholar

18. Gasgnier, M., Schiffmacher, G., Caro, P., Eyring, L. J. Less-Common. Met. 1986, 116, 31–42, https://doi.org/10.1016/0022-5088(86)90214-6.Search in Google Scholar

19. Heiba, Z. K., Bakr Mohamed, M., Fuess, H. Cryst. Res. Technol. 2012, 47, 535–540, https://doi.org/10.1002/crat.201200032.Search in Google Scholar

20. Blanusa, J., Mitric, M., Felner, I., Jovic, N., Bradaric, I. J. Magn. Mater. 2003, 263, 295–300, https://doi.org/10.1016/s0304-8853(03)00065-9.Search in Google Scholar

21. Hase, W. Phys. Status Solidi 1963, 3, 446–449, https://doi.org/10.1002/pssb.19630031225.Search in Google Scholar

22. Bartos, A., Lieb, K. P., Uhrmacher, M., Wiarda, D. Acta Crystallogr. 1993, B49, 165–169, https://doi.org/10.1107/s0108768192007742.Search in Google Scholar

23. Bommer, H. Z. Anorg. Allg. Chem. 1939, 241, 273–280, https://doi.org/10.1002/zaac.19392410215.Search in Google Scholar

24. Antic, B., Oennerud, P., Rodic, D., Tellgren, R. Powder Diffr. 1993, 8, 216–220, https://doi.org/10.1017/s0885715600019394.Search in Google Scholar

25. Weidlein, J., Müller, U., Dehnicke, K. Schwingungsfrequenzen I – Hauptgruppenelemente, Vol. 1; Auflage, Georg-Thieme-Verlag, Stuttgart, New York, 1981.Search in Google Scholar

26. Weidlein, J., Müller, U., Dehnicke, K. Schwingungsfrequenzen II – Nebengruppenelemente, 1. Auflage; Georg-Thieme-Verlag, Stuttgart, New York, 1986.Search in Google Scholar

Erhalten: 2022-01-07
Angenommen: 2022-01-12
Online erschienen: 2022-02-04
Erschienen im Druck: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0004/html
Scroll to top button