Home The solid solutions TbCuIn1–x M x (M = Al, Ga)
Article
Licensed
Unlicensed Requires Authentication

The solid solutions TbCuIn1–x M x (M = Al, Ga)

  • Myroslava Horiacha , Galyna Nychyporuk , Rainer Pöttgen EMAIL logo and Vasyl Zaremba EMAIL logo
Published/Copyright: April 21, 2022
Become an author with De Gruyter Brill

Abstract

The complete solid solutions TbCuIn1–x M x (M = Al, Ga) were studied by powder X-ray diffraction and scanning electron microscopy for samples equilibrated at T = 873 K. The influence of In substitution by Al or Ga, the solubility ranges and the changes of unit cell parameters have been determined: TbCuIn1.0–0Al0–1.0 (ZrNiAl type, space group P 6 2 m, a = 0.7457(1)–0.7035(1), c = 0.3958(1)–0.4044(1) nm, V = 0.1906–0.1733 nm3); TbCuIn1–0.8Ga0–0.2 (ZrNiAl type, a = 0.74569(5)–0.73882(13), с = 0.39582(3)–0.39663(14) nm, V = 0.1906–0.1875 nm3); TbCuIn0.3–0Ga0.7–1.0 (KHg2 type, Imma, а = 0.43943(9)–0.43750(5), b = 0.70833(12)–0.70537(6), с = 0.74866(12)–0.74525(7) nm, V = 0.2330–0.2300 nm3). The crystal structure of TbCuIn0.42(1)Al0.58(1) was refined from single-crystal X-ray diffractometer data: ZrNiAl type, P 6 2 m, a = 0.71633(6), c = 0.40785(3) nm, wR2 = 0.0379, 291 F 2 values and 16 variables. The basic crystal chemical features are discussed.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail: ; and Vasyl Zaremba, Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, 79005 Lviv, Ukraine, E-mail:

Acknowledgements

This work was supported by the DAAD foundation (research stipend to MH).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kalychak, Ya. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth–transition metal–indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.Jr., Pecharsky, V. K., Bünzli, J.-C., Eds. Elsevier: Amsterdam, Vol. 34, 2005, pp. 1–133. chapter 218.10.1016/S0168-1273(04)34001-8Search in Google Scholar

2. Kalychak, Ya. M., Bakar, А. М., Gladyshevskii, Е. I. Izv. Vysh. Uchebn. Zaved. Tsvetn. Metall. 1989, 3, 95–99.Search in Google Scholar

3. Oesterreicher, H. J. Less-Common Met. 1973, 30, 225–236. https://doi.org/10.1016/0022-5088(73)90109-4.Search in Google Scholar

4. Kripyakevich, P. I. Structure Types of Intermetallic Compounds; Nauka: Moscow, 1977. (in Russian).Search in Google Scholar

5. Markiv, V. Y., Belyavina, N. M., Zhunkovskaya, T. G. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1982, 2, 80–83.Search in Google Scholar

6. Szytuła, A., Tyvanсhuk, Yu., Jaworska-Gołąb, T., Zarzycki, A., Kalychak, Ya., Gondek, Ł., Stüsser, N. Chem. Met. Alloys 2008, 1, 97–101.10.30970/cma1.0012Search in Google Scholar

7. Dong, Q. Y., Shen, B. G., Chen, J., Shen, J., Sun, J. R. Solid State Commun. 2011, 151, 112–115. https://doi.org/10.1016/j.ssc.2010.11.013.Search in Google Scholar

8. Ehlers, G., Ahlert, D., Ritter, C., Miekeley, W., Maletta, H. Europhys. Lett. 1997, 37, 269–274. https://doi.org/10.1209/epl/i1997-00142-5.Search in Google Scholar

9. Klicpera, M., Javorský, P., Orench, I. P. Phys. Rev. B 2011, 84, 224414. https://doi.org/10.1103/physrevb.84.224414.Search in Google Scholar

10. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

11. Nolze, G., Kraus, W. Powder Diffr. 1998, 13, 256–259.10.1017/S0885715600020856Search in Google Scholar

12. WinXPOW (Version 1.2), STOE & Cie GmbH, Darmstadt (Germany), 2001.Search in Google Scholar

13. Rodriguez-Carvajal, J. Commission on Powder Diffraction, IUCr Newsletter 2001, 26, 12.Search in Google Scholar

14. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

15. Dwight, A. E. In Proc. Rare Earth Res. Conf. 12th, Colorado, USA, Vol. 1, 1976, pp. 480–489.Search in Google Scholar

16. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. W. Trans. Met. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar

17. Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145. https://doi.org/10.1524/zkri.216.3.127.20327.Search in Google Scholar

18. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar

19. Flack, H. D., Bernadinelli, G. Acta Crystallogr. 1999, A55, 908–915. https://doi.org/10.1107/s0108767399004262.Search in Google Scholar PubMed

20. Flack, H. D., Bernadinelli, G. J. Appl. Crystallogr. 2000, 33, 1143–1148. https://doi.org/10.1107/s0021889800007184.Search in Google Scholar

21. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. 2013, B69, 249–259. https://doi.org/10.1107/s2052519213010014.Search in Google Scholar PubMed PubMed Central

22. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Search in Google Scholar

23. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar

24. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606. https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

25. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289–304.10.1515/znb-2015-0018Search in Google Scholar

26. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

27. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar

28. Horiacha, M., Rinylo, N., Nychyporuk, G., Serkiz, R., Pöttgen, R., Zaremba, V. Ukr. Khim. Zh. 2018, 84, 31–37.Search in Google Scholar

29. Horiacha, M., Zinko, L., Nychyporuk, G., Serkiz, R., Zaremba, V. Visn. Lviv. Univ. Ser. Khim. 2017, 58, 77–85.Search in Google Scholar

30. Horiacha, M., Savchuk, I., Nychyporuk, G., Serkiz, R., Zaremba, V. Visn. Lviv. Univ. Ser. Khim. 2018, 59, 67–75. https://doi.org/10.30970/vch.5901.067.Search in Google Scholar

31. Klicpera, M., Javorský, P., Daniš, S. J. Phys.: Conf. Ser. 2011, 303, 012031. https://doi.org/10.1088/1742-6596/303/1/012031.Search in Google Scholar

32. Horiacha, M., Halyatovskii, B., Horiacha, S., Nychyporuk, G., Pöttgen, R., Zaremba, V. Visn. Lviv. Univ. Ser. Khim. 2020, 61, 52–62. https://doi.org/10.30970/vch.6101.052.Search in Google Scholar

33. Zaremba, N. V., Nychyporuk, G. P., Schepilov, Yu. V., Panakhyd, O. I., Muts, I. R., Hlukhyy, V. V., Pavlyuk, V. V. Ukr. Khim. Zh. 2018, 84, 76–84.Search in Google Scholar

34. Zaremba, N., Schepilov, Yu., Nychyporuk, G., Muts, I., Pavlyuk, V., Zaremba, V. Visn. Lviv. Univ. Ser. Khim. 2020, 61, 44–51. https://doi.org/10.30970/vch.6101.044.Search in Google Scholar

35. Zaremba, N., Nychyporuk, G., Horiacha, M., Zaremba, V. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021, LXVI, 117–124. https://doi.org/10.37827/ntsh.chem.2021.66.117.Search in Google Scholar

Received: 2022-03-22
Accepted: 2022-03-31
Published Online: 2022-04-21
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0042/html
Scroll to top button