Startseite On the structural, electronic, and thermoelectric properties of EuMg2X2 (X = P, As, Sb, Bi) zintl phase; A first principles investigations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the structural, electronic, and thermoelectric properties of EuMg2X2 (X = P, As, Sb, Bi) zintl phase; A first principles investigations

  • Sajid Khan , Dil Faraz Khan , Essam A. Al-Ammar , Hayat Ullah , Tariq Usman und Ghulam Murtaza EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2024

Abstract

The key solution to the now-a-days energy crisis is the conversion of waste heat into useful electrical energy. In this work, the structural, electronic, and thermoelectric characteristics of EuMg2X2 (X = P, As, Sb, Bi) zintl materials have been investigated comprehensively through first principles studies. Structural analysis shows that our measured values fit well with the previous available experimental data. Three potential functionals, PBE GGA, TB-mBJ, and hybrid functional (YS-PBE0), have been used to study the electronic behavior of the titled compounds. EuMg2X2 (X = P, As, Sb, Bi) reveal band gaps of 0.83 eV, 0.72 eV, 0.34 eV, and 0.41 eV, respectively, through hybrid functional (YS-PBE0). Density of states (DOS) and partial density of states (PDOS) studies reveals the role offered by different atomic orbitals in the formation of electronic band structures of the samples. Similarly, thermoelectric tone of the said compounds is calculated by virtue of BoltzTraP2 computational code. The ultralow thermal conductivity and optimum level of carriers’ concentration encompass these materials to be good thermoelectrics with better and reasonable thermoelectric efficiency (ZTe).


Corresponding author: Ghulam Murtaza, Materials Modeling Lab, Department of Physics, Islamia College Peshawar, 25120, Khyber, Pakhtunkhwa, Pakistan, E-mail: 

Acknowledgments

The work was supported by Researchers Supporting Project number (RSP2024R492), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: All the work is original and it is not submitted anywhere for publication. The similarity index is below the standard allowed value.

  2. Informed consent: All have the consent to submit this to the journal in this current form.

  3. Author contributions: Sajid Khan1, Dil Faraz Khan1, Essam A. Al-Ammar2, Hayat Ullah3, Tariq Usman4, G. Murtaza5 have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: These tools have been if used are at the minimum value than the allowed.

  5. Conflict of interest: The authors no conflict of interest.

  6. Research funding: There is no funding to declare.

  7. Data availability: Data can be made available on reasonable request.

References

[1] M. Manzoor, D. Bahera, R. Sharma, F. Tufail, M. W. Iqbal, and S. K. Mukherjee, “Investigated the structural, optoelectronic, mechanical, and thermoelectric properties of Sr2BTaO6 (B= Sb, Bi) for solar cell applications,” Int. J. Energy Res., vol. 46, no. 15, pp. 23698–23714, 2022, https://doi.org/10.1002/er.8669.Suche in Google Scholar

[2] J. A. Abraham, D. Behera, K. Kumari, A. Srivastava, R. Sharma, and S. K. Mukherjee, “A comprehensive DFT analysis on structural, electronic, optical, thermoelectric, SLME properties of new Double Perovskite Oxide Pb2ScBiO6,” Chem. Phys. Lett., vol. 806, p. 139987, 2022. https://doi.org/10.1016/j.cplett.2022.139987.Suche in Google Scholar

[3] J. L. Cohn, G. S. Nolas, V. Fesstidis, T. H. Metcalf, and G. A. Slack, “Glasslike heat conduction in high-mobility crystalline semiconductors,” Phys. Rev. Lett., vol. 82, p. 779, 1999. https://doi.org/10.1103/physrevlett.82.779.Suche in Google Scholar

[4] Y. Yin, K. Baskaran, and A. Tiwari, “A review of strategies for developing promising thermoelectric materials by controlling thermal conduction,” Phys. Status Solidi A, vol. 216, no. 12, p. 1800904, 2019. https://doi.org/10.1002/pssa.201800904.Suche in Google Scholar

[5] S. M. Kauzlarich, “Special issue: advances in Zintl phase materials,” Materials, vol. 12, no. 16, p. 2554, 2019. https://doi.org/10.3390/ma12162554.Suche in Google Scholar PubMed PubMed Central

[6] K.-F. Liu and S.-Q. Xia, “Recent progresses on thermoelectric Zintl phases: structures, materials and optimization,” J. Solid State Chem., vol. 270, pp. 252–264, 2019. https://doi.org/10.1016/j.jssc.2018.11.030.Suche in Google Scholar

[7] J. Shuai, et al., “Thermoelectric properties of Bi-based Zintl compounds Ca1-xYbxMg2Bi2,” J. Mater. Chem. A, vol. 4, no. 11, pp. 4312–4320, 2016. https://doi.org/10.1039/c6ta00507a.Suche in Google Scholar

[8] X.-J. Wang, M.-Bo Tang, J.-T. Zhao, H.-H. Chen, and X.-X. Yang, “Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2,” Appl. Phys. Lett., vol. 90, no. 23, p. 232107, 2007. https://doi.org/10.1063/1.2746408.Suche in Google Scholar

[9] A. Khireddine, A. Bouhemadou, S. Maabed, S. Bin-Omran, R. Khenata, and Y. Al-Douri, “Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2,” Solid State Science, vol. 128, p. 106893, 2022. https://doi.org/10.1016/j.solidstatesciences.2022.106893.Suche in Google Scholar

[10] A. Hamidani, B. Bennecer, and K. Zanat, “Effect of Sr substitution on the structural, electronic and thermoelectric properties of the Zintl-phase compound BaZn2Sb2,” Phys. Scr., vol. 98, no. 10, p. 065910, 2023. https://doi.org/10.1088/1402-4896/accfd0.Suche in Google Scholar

[11] C. Chen, et al.., “Zintl-phase Eu2ZnSb2: a promising thermoelectric material with ultralow thermal conductivity,” Proc. Natl. Acad. Sci.USA, vol. 116, no. 8, pp. 2831–2836, 2019, https://doi.org/10.1073/pnas.1819157116.Suche in Google Scholar PubMed PubMed Central

[12] K. Shinozaki, et al.., “Thermoelectric properties of the as/P-based zintl compounds EuIn2AsxPx (x = 0–2) and SrSn2As2,” ACS Appl. Energy Mater., vol. 4, no. 5, pp. 5155–5164, 2021, https://doi.org/10.1021/acsaem.1c00687.Suche in Google Scholar

[13] H. A. Alburaih, et al.., “First principle study of opto-electronic and thermoelectric properties of Zintl Phase XIn2Z2 (X = Ca, Sr and Z = As, Sb),” Appl. Phys. A, vol. 128, p. 451, 2022. https://doi.org/10.1007/s00339-022-05582-1.Suche in Google Scholar

[14] J. Munir, A. S. Jbara, Q. Ain, et al., “An insight into the electronic, optical and transport properties of promising Zintl-phase BaMg2P2,” Phys B: Phys Condens. Matter, vol. 618, p. 413181, 2021. https://doi.org/10.1016/j.physb.2021.413181.Suche in Google Scholar

[15] D. Behera, R. Sharma, H. Ullah, H. S. Waheed, and S. K. Mukherjee, “Electronic, optical, and thermoelectric investigations of Zintl phase AAg2Se2 (A= Sr, Ba) compounds: a first-principle approach,” J. Solid State Chem., vol. 312, p. 123259, 2022. https://doi.org/10.1016/j.jssc.2022.123259.Suche in Google Scholar

[16] D. Behera, M. Manzoor, R. Sharma, M. W. Iqbal, and S. K. Mukherjee, “First principles insight on structural, opto-electronic and transport properties of novel Zintl-phase AMg2Bi2 (A= Sr, Ba),” J. Solid State Chem., vol. 320, no. 01, p. 123860, 2023. https://doi.org/10.1016/j.jssc.2023.123860.Suche in Google Scholar

[17] M. Manzoor, et al., “Structural, electronic, optical, and thermoelectric studies on Zintl SrCd2Pn2 (Pn= P/As) compounds for solar cell applications: a First Principle Approach,” J. Solid State Chem., vol. 326, no. 01, p. 124188, 2023. https://doi.org/10.1016/j.jssc.2023.124188.Suche in Google Scholar

[18] A. F. May, et al., “Thermoelectric transport properties of CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2,” Phys. Rev. B, vol. 85, p. 035202, 2012.Suche in Google Scholar

[19] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k –An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties, Vienna, Austria, Vienna University of Technology, 2001.Suche in Google Scholar

[20] J. A. Pople, P. M. Gill, and B. G. Johnson, “Kohn – sham density-functional theory within a finite basis set,” Chem. Phys. Lett., vol. 199, no. 6, pp. 557–560, 1992, https://doi.org/10.1016/0009-2614(92)85009-y.Suche in Google Scholar

[21] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 01, p. 3865, 1996. https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

[22] F. Trans and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett., vol. 102, p. 226401, 2009. https://doi.org/10.1103/physrevlett.102.226401.Suche in Google Scholar PubMed

[23] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functional based on a screened Coulomb potential,” J. Chem. Phys., vol. 118, no. 18, p. 8207, 2003. https://doi.org/10.1063/1.1564060.Suche in Google Scholar

[24] T. J. Scheidemantel, C. Ambrosch-Draxel, T. Thonhauser, J. V. Badding, and J. O. Sofo, “Transport coefficient from first-principles calculations,” Phys. Rev. B, vol. 68, p. 125210, 2003.10.1103/PhysRevB.68.125210Suche in Google Scholar

[25] W. Li, J. Carrete, N. A. Katcho, N. Mingo, and B. T. E. Sheng, “A solver of the Boltzmann transport equation for phonons,” Comput. Phys. Commun., vol. 185, no. 01, p. 1747, 2014.10.1016/j.cpc.2014.02.015Suche in Google Scholar

[26] G. K. H. Madsen, J. Carrete, and M. J. Verstraete, “BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients,” Comput. Phys. Commun., vol. 231, pp. 140–145, 2018. https://doi.org/10.1016/j.cpc.2018.05.010.Suche in Google Scholar

[27] P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, “Temperature effects on the universal equation of state of solids,” Phys. Rev. B, vol. 35, p. 1945, 1987. https://doi.org/10.1103/physrevb.35.1945.Suche in Google Scholar PubMed

[28] F. Wartenberg, et al., “Neue Pnictide im CaAl2Si2-Typ und dessen Existenzgebiet,” Z. Naturforsch., vol. 57 b, no. 11, pp. 1270–1276, 2002.10.1515/znb-2002-1112Suche in Google Scholar

[29] A. F. May, M. A. McGuire, D. J. Singh, R. Custelcean, and G. E. Jellison, “Structure and properties of single crystalline CaMg2Bi2, EuMg2Bi2 and YbMg2Bi2,” Inorg. Chem., vol. 50, no. 21, p. 11127, 2011. https://doi.org/10.1021/ic2016808.Suche in Google Scholar PubMed

[30] D. Ramirez, A. Gallagher, R. Baumbach, and T. Siegrist, “Synthesis and characterization of the divalent samarium Zintl-phases SmMg2Bi2 and SmMg2Sb2,” J. Solid State Chem., vol. 231, pp. 217–222, 2015. https://doi.org/10.1016/j.jssc.2015.08.039.Suche in Google Scholar

[31] B. T. Liou, S. H. Yen, and Y. K. Kuo, “Vegard’s law deviation in band gap and bowing parameter of AlxIn1-xN,” Appl. Phys. A, vol. 81, pp. 651–655, 2005. https://doi.org/10.1007/s00339-004-2711-1.Suche in Google Scholar

[32] E. S. Toberer, A. F. May, and G. Jeffrey Snyder, “Zintl chemistry for designing high efficiency thermoelectric materials,” Chem. Mater., vol. 22, no. 3, pp. 624–634, 2010. https://doi.org/10.1021/cm901956r.Suche in Google Scholar

[33] S. Khan, R. Neffati, T. Usman, M. W. Ahsraf, S. Khan, and G. Murtaza, “Electronic and thermoelectric properties of YbMg2X2 (X = P, As, Sb, Bi) Zintl compounds by first-principles method,” J. Rare Earths, vol. 42, pp. 147–154, 2022. https://doi.org/10.1016/j.jre.2022.11.018.Suche in Google Scholar

[34] R. Ullah, M. A. Ali, A. Khan, G. Murtaza, A. Mahmood, and S. M. Ramay, “Influence on the spin-orbit coupling effect on the electronic and thermoelectric properties of Cs2MI6 (M = Zr, Hf) variant perovskites,” Mater. Res. Bull., vol. 134, no. 1, p. 111112, 2021. https://doi.org/10.1016/j.materresbull.2020.111112.Suche in Google Scholar

[35] S. H. Shah, W. Khan, A. Laref, and G. Murtaza, “Effects of anion replacement on the physical properties of CaCd2X2 (X = P, As, Sb, Bi),” J. Phys. Chem. Solids, vol. 127, pp. 81–87, 2019. https://doi.org/10.1016/j.jpcs.2018.12.013.Suche in Google Scholar

[36] H. Alam and S. Ramakrishna, “A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials,” Nano Energy, vol. 2, no. 2, pp. 190–212, 2013, https://doi.org/10.1016/j.nanoen.2012.10.005.Suche in Google Scholar

Received: 2024-03-15
Accepted: 2024-11-13
Published Online: 2024-12-04
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2024-0057/html
Button zum nach oben scrollen