Startseite Electrical and magnetic properties of MF/CuAl nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrical and magnetic properties of MF/CuAl nanocomposites

  • Khaled Roumaih ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. November 2023

Abstract

This study investigated the effects of CuAl2O4 (CuAl) on four types of spinel ferrites: CoFe2O4 (CoF), NiFe2O4 (NiF), MgFe2O4 (MgF), and ZnFe2O4 (ZnF) with regards to their electrical characteristics and microscopic magnetic behavior. According to the Seebeck coefficient (φ), the nanocomposites have a mixture of positive and negative charge carriers, except for CoF/CuAl, which has a positive charge carrier only. Depending on the temperature, the DC conductivity of all MF/CuAl nanocomposites has a conductor and semiconductor behavior. The dielectric properties were studied at different frequencies (100–10^8 Hz) and temperatures (300–673 K). The results demonstrated how temperature and frequency affect AC operating mechanisms. The high values of dielectric loss for all nanocomposites confirm their applicability in high-frequency microwave devices. The impedance study revealed that the equivalent circuit for all MF/CuAl nanocomposites is a mixture of R, L, and C. Temperature-magnetization graphs were obtained for all nanocomposites, indicating ferrimagnetic behavior except ZnF/CuAl. The magnetic transition temperature (T Cm), the Curie–Weiss constant (θ CW), and the effective magnetic moments (μ eff) for all nanocomposites were determined. The MF/CuAl samples were analyzed using ESR spectroscopy at room temperature. The spectra were distorted but remained distinct, potent, and sweeping. The g-factor values deviate from the free electron, which suggests that the Fe3+–O–Fe3+ superexchange interaction has changed. In addition, the interaction effect between MF and CuAl is discussed.


Corresponding author: Khaled Roumaih, Egyptian Atomic Energy Authority, Nuclear Research Center, Reactor Physics Department, Cairo, 13759, Egypt, E-mail:

  1. Research ethics: The author confirms that his work has been approved for publication by their institute.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: Financing is not available.

  5. Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

[1] C. Feng, X. Liu, S. W. Or, and S. L. Ho, “Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules,” AIP Adv., vol. 7, p. 056403, 2017. https://doi.org/10.1063/1.4972805.Suche in Google Scholar

[2] L. I. El-Gendy, A. A. Ghani, A. S. Darwish, and A. A. Sattar, “Synthesis, microstructure analysis, electrical and magnetic properties of Ni0.5Mg0.5Fe2O4 – BaTiO3 nano-composites,” Appl. Phys. A, vol. 127, p. 239, 2021. https://doi.org/10.1007/s00339-021-04384-1.Suche in Google Scholar

[3] C. Murugesan, L. Okrasa, and G. Chandrasekaran, “Structural, AC conductivity, impedance and dielectric study of nanocrystalline MFe2O4 (M = Mg, Co or Cu) spinel ferrites,” J. Mater. Sci. Mater. Electron., vol. 28, pp. 13168–13175, 2017. https://doi.org/10.1007/s10854-017-7152-7.Suche in Google Scholar

[4] Z. K. Heiba, M. B. Mohamed, A. M. El-Naggar, and Y. Altowairqi, “Structure and dielectric properties of ZnMn2O4/NiFe2O4 nanocomposite,” Appl. Phys. A, vol. 127, p. 577, 2021. https://doi.org/10.1007/s00339-021-04731-2.Suche in Google Scholar

[5] J. P. Singh, S. O. Won, W. C. Lim, I.-J. Lee, and K. H. Chae, “Electronic structure studies of chemically synthesized MgFe2O4 nanoparticles,” J. Mol. Struct., vol. 1108, pp. 444–450, 2016. https://doi.org/10.1016/j.molstruc.2015.12.002.Suche in Google Scholar

[6] M. Manikandan, P. Manimuthu, and C. Venkateswaran, “Structural and magnetic properties of MgFe2O4 ceramic,” AIP Conf. Proc., vol. 1576, p. 194, 2014. https://doi.org/10.1063/1.4862018.Suche in Google Scholar

[7] A. Hashhasha, I. Bobrikov, M. Yehia, M. Kaiser, and E. Uyanga, “Neutron diffraction and Mössbauer spectroscopy studies for Ce doped CoFe2O4 nanoparticles,” J. Magn. Magn. Mater., vol. 503, p. 166624, 2020. https://doi.org/10.1016/j.jmmm.2020.166624.Suche in Google Scholar

[8] R. S. Yadav, I. Kuřitka, J. Vilcakova, et al.., “Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion,” J. Phys. Chem. Sol., vol. 107, pp. 150–161, 2017. https://doi.org/10.1016/j.jpcs.2017.04.004.Suche in Google Scholar

[9] R. Tan, S. W. Hwang, A. Sivanantham, and I. S. Cho, “Solution synthesis and activation of spinel CuAl2O4 film for solar water-splitting,” J. Catal., vol. 400, pp. 218–227, 2021. https://doi.org/10.1016/j.jcat.2021.06.004.Suche in Google Scholar

[10] K. Roumaih and S. I. Hussein, “Effect of Ba ion on phase formation, microstructure and photocatalytic properties of the CuAl2O4 nanoparticle,” Eur. J. Appl. Sci., vol. 9, no. 2, pp. 212–233, 2021. https://doi.org/10.14738/aivp.92.9963.Suche in Google Scholar

[11] L. C. Leu, D. P. Norton, G. E. JellisonJr., V. Selvamanickam, and X. Xiong, “Optical and dielectric properties of CuAl2O4 films synthesized by solid-phase epitaxy,” Thin Solid Films, vol. 515, pp. 6938–6942, 2007. https://doi.org/10.1016/j.tsf.2007.02.012.Suche in Google Scholar

[12] R. Zhang, L. Sun, Z. Wang, W. Haob, E. Cao, and Y. Zhang, “Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method,” Mater. Res. Bull., vol. 98, pp. 133–138, 2018. https://doi.org/10.1016/j.materresbull.2017.08.006.Suche in Google Scholar

[13] K. Roumaih, M. Yehia, and H. E. Hassan, “Synthesis and characterization of core–shell NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 nanoferrites,” J. Inorg. Organomet. Polym. Mater., vol. 30, pp. 3132–3142, 2020. https://doi.org/10.1007/s10904-020-01476-y.Suche in Google Scholar

[14] K. Roumaih, “Effect of temperature on the dielectric and magnetic properties of NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 core-shell,” Phys. Scr., vol. 96, p. 125809, 2021. https://doi.org/10.1088/1402-4896/ac2087.Suche in Google Scholar

[15] K. Roumaih, S. I. Hussein, and I. A. Ali, “Structural, magnetic properties and hyperthermia efficiency of MF/CuAl2O4 multiferroic nanocomposite,” Chin. J. Phys., vol. 77, pp. 223–232, 2022. https://doi.org/10.1016/j.cjph.2022.03.009.Suche in Google Scholar

[16] S. A. Fareed, M. Ibrahim, A. E. Hannora, and M. M. El-Desoky, “Structure, seebeck coefficient and DC electrical conductivity of Bi2Mn4O10 prepared by mechanochemical method,” J. Mater. Sci. Mater. Electron., vol. 33, pp. 15346–15358, 2022. https://doi.org/10.1007/s10854-022-08426-z.Suche in Google Scholar

[17] K. Roumaih, “The transport properties of the mixed Ni–Cu ferrite,” J. Alloys Compd., vol. 465, pp. 291–295, 2008. https://doi.org/10.1016/j.jallcom.2007.10.073.Suche in Google Scholar

[18] R. Samad, M. D. Rather, K. Asokan, and B. Want, “Dielectric and magnetic properties of rare-earth-doped cobalt ferrites and their first-order reversal curve analysis,” Appl. Phys. A, vol. 125, p. 503, 2019. https://doi.org/10.1007/s00339-019-2804-5.Suche in Google Scholar

[19] M. K. Fayek, S. S. Ata-Allah, K. Roumaih, and S. Ismail, “Thermoelectric power properties of Zn substituted Cu–Ga spinel ferrites,” Mater. Lett., vol. 63, pp. 1010–1012, 2009. https://doi.org/10.1016/j.matlet.2009.01.071.Suche in Google Scholar

[20] A. Ashok, T. Somaiah, D. Ravinder, et al.., “Electrical properties of cadmium substitution in nickel ferrites,” World J. Condens. Matter Phys., vol. 2, pp. 257–266, 2012. https://doi.org/10.4236/wjcmp.2012.24043.Suche in Google Scholar

[21] P. Gao, X. Hua, V. Degirmenci, et al.., “Structural and magnetic properties of Ni1−xZnxFe2O4 (x=0, 0.5 and 1) nanopowders prepared by sol–gel method,” J. Magn. Magn. Mater., vol. 48, pp. 44–50, 2013. https://doi.org/10.1016/j.jmmm.2013.07.060.Suche in Google Scholar

[22] Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, and W. Song, “Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles,” J. Magn. Magn. Mater., vol. 321, pp. 1251–1255, 2009. https://doi.org/10.1016/j.jmmm.2008.11.004.Suche in Google Scholar

[23] M. Mostafa, O. Saleh, A. M. Henaish, et al.., “Structure, morphology and electrical/magnetic properties of Ni–Mg nano-ferrites from a new perspective,” Nanomaterials, vol. 12, p. 1045, 2022. https://doi.org/10.3390/nano12071045.Suche in Google Scholar PubMed PubMed Central

[24] M. I. Ul Haq, A. U. Rehman, M. Asghar, et al.., “Influence of Ce3+ and La3+ substitution on structural & optical parameters and electrical behavior on Mg–Zn ferrites synthesized via Co-precipitation method,” J. Supercond. Novel Magn., vol. 35, pp. 719–732, 2022. https://doi.org/10.1007/s10948-021-06124-1.Suche in Google Scholar

[25] Z. G. Özdemir, M. Kılıç, Y. Karabul, B. S. Mısırlıoğlu, Ö. Çakır, and N. D. Kahya, “A transition in the electrical conduction mechanism of CuO/CuFe2O4 nanocomposites,” J. Electroceram., vol. 44, pp. 1–15, 2020. https://doi.org/10.1007/s10832-019-00194-3.Suche in Google Scholar

[26] N. M. Sadik, A. A. Sattar, M. M. Rashad, and H. M. Elsayed, “Physical, magnetic and enhanced electrical properties of SrTiO3–MgFe2O4 nanocomposites,” SN Appl. Sci., vol. 2, p. 620, 2020. https://doi.org/10.1007/s42452-020-2450-8.Suche in Google Scholar

[27] H. E. Sekrafi, A. B. Jazia Kharrat, M. A. Wederni, N. Chniba-Boudjada, K. Khirouni, and W. Boujelben, “Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTixO3 (x = 0, 0.04) compounds,” J. Mater. Sci. Mater. Electron., vol. 30, pp. 876–891, 2019. https://doi.org/10.1007/s10854-018-0359-4.Suche in Google Scholar

[28] J. C. Maxwell, Electricity and Magnetism, London, Oxford University Press, 1973.Suche in Google Scholar

[29] C. Murugesan, P. M. Gazzali, B. Sathyamoorthy, and G. Chandrasekaran, “Dielectric properties of Mn[sub 0.5]Zn[sub 0.5]Fe[sub 2]O[sub 4] ferrite nanoparticles,” AIP Conf. Proc., vol. 314, p. 1512, 2013. https://doi.org/10.1063/1.4791037.Suche in Google Scholar

[30] A. I. Ghoneim, M. A. Amer, T. M. Meaz, and S. S. Attalah, “Dielectric properties of Ti4+ substituted BaFe12O19 nanoparticles,” Phys. B, vol. 507, pp. 1–12, 2017. https://doi.org/10.1016/j.physb.2016.11.032.Suche in Google Scholar

[31] R. S. Yadav, I. Kuřitka, J. Vilcakova, et al.., “Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method,” J. Phys. Chem. Sol., vol. 110, pp. 87–99, 2017. https://doi.org/10.1016/j.jpcs.2017.05.029.Suche in Google Scholar

[32] A. Ditta, M. A. Khan, M. Junaid, R. M. A. Khalil, and M. F. Warsi, “Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co–Ni (Ni0.4Co0.6Fe2O4) ferrites,” Phys. B, vol. 507, pp. 27–34, 2017. https://doi.org/10.1016/j.physb.2016.11.030.Suche in Google Scholar

[33] A. K. Jonscher, “The ‘universal’ dielectric response,” Nature, vol. 267, p. 673, 1977. https://doi.org/10.1038/267673a0.Suche in Google Scholar

[34] R. M. Kershi and S. H. Aldirham, “Transport and dielectric properties of nanocrystallite cobalt ferrites: correlation with cations distribution and crystallite size,” Mater. Chem. Phys., vol. 238, p. 121902, 2019. https://doi.org/10.1016/j.matchemphys.2019.121902.Suche in Google Scholar

[35] V. Thakur, A. Singh, A. Awasthi, and L. M. Singh, “Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses,” AIP Adv., vol. 5, p. 087110, 2015. https://doi.org/10.1063/1.4928339.Suche in Google Scholar

[36] A. Ghosh, “Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors,” Phys. Rev. B, vol. 41, p. 1479, 1990. https://doi.org/10.1103/physrevb.41.1479.Suche in Google Scholar PubMed

[37] A. R. Long, “Frequency-dependent loss in amorphous semiconductors,” Adv. Phys., vol. 31, p. 553, 1982. https://doi.org/10.1080/00018738200101418.Suche in Google Scholar

[38] F. Ahmad and A. Maqsood, “Structural, dielectric, impedance, complex modulus, and optical study of Ni-doped Zn(1−x)NixO nanostructures at high temperatures,” Mater. Res. Express, vol. 8, p. 115005, 2021. https://doi.org/10.1088/2053-1591/ac2fcd.Suche in Google Scholar

[39] Y. B. Taher, A. Oueslati, K. Khirouni, and M. Gargouri, “Impedance spectroscopy and conduction mechanism of LiAlP2O7 material,” Mater. Res. Bull., vol. 78, pp. 148–157, 2016. https://doi.org/10.1016/j.materresbull.2016.02.033.Suche in Google Scholar

[40] C. G. Koops, “On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies,” Phys. Rev., vol. 83, pp. 121–124, 2018. https://doi.org/10.1103/PhysRev.83.121.Suche in Google Scholar

[41] J. Li, L. Hou, R. Jia, L. Gao, K. Wu, and S. Li, “Influences of CuAl2O4 doping on the dielectric properties of CaCu3Ti4O12 ceramics,” J. Mater. Sci. Mater. Electron., vol. 26, pp. 5085–5091, 2015. https://doi.org/10.1007/s10854-015-3033-0.Suche in Google Scholar

[42] Z. K. Heiba, M. B. Mohamed, and A. Badawi, “(1−x)NiFe2O4/xZnMn2O4 solid solution: structure and dielectric properties investigation,” J. Mater. Sci. Mater. Electron., vol. 33, pp. 10524–10539, 2022. https://doi.org/10.1007/s10854-022-08039-6.Suche in Google Scholar

[43] K. M. Batoo and M.-S. A. El-Sadek, “Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method,” J. Alloys Compd., vol. 566, pp. 112–119, 2013. https://doi.org/10.1016/j.jallcom.2013.02.129.Suche in Google Scholar

[44] K. Dhabekar and K. M. Kant, “Electric transport and dielectric studies of CoFe2O4-BaFe12O19 nanocomposite,” J. Cluster Sci., vol. 33, pp. 311–320, 2022. https://doi.org/10.1007/s10876-020-01976-4.Suche in Google Scholar

[45] D. K. Mahatoa and S. Banerjee, “Dielectric characteristics of MgFe2O4 ferrite prepared by sol-gel auto-combustion method,” Mater. Today Proc., vol. 4, pp. 5525–5531, 2017. https://doi.org/10.1016/j.matpr.2017.06.008.Suche in Google Scholar

[46] S. A. Saafan, M. K. El-Nimr, M. M. Hussein, and M. K. Omar, “FTIR, DC, and AC electrical measurements of Mg Zn Nano-ferrites and their composites with Polybenzoxazine,” Appl. Phys. A, vol. 127, p. 800, 2021. https://doi.org/10.1007/s00339-021-04947-2.Suche in Google Scholar

[47] A. Manohar, C. Krishnamoorthi, K. C. B. Naidu, and C. Pavithra, “Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method,” Appl. Phys. A, vol. 125, p. 477, 2019. https://doi.org/10.1007/s00339-019-2760-0.Suche in Google Scholar

[48] S. Thakur, H. Sharma, S. Sharma, et al.., “Dielectric and multiferroic properties of Na0.5Bi0.5TiO3–CoFe2O4 heterostructure composite ceramic,” J. Mater. Sci. Mater. Electron., vol. 33, pp. 5831–5845, 2022. https://doi.org/10.1007/s10854-022-07766-0.Suche in Google Scholar

[49] H. B. Sharma, D. K. Nomita, V. Gupta, J. H. Lee, and S. B. Singh, “Ac electrical conductivity and magnetic properties of BiFeO3–CoFe2O4 nanocomposites,” J. Alloys Compd., vol. 599, pp. 32–39, 2014. https://doi.org/10.1016/j.jallcom.2014.02.024.Suche in Google Scholar

[50] N. Channa, M. Khalid, A. D. Chandio, et al.., “Structural, dielectric, impedance, and electric modulus properties of Cu2+-substituted CuxMn1-xFe2O4 spinel ferrites nanoparticles,” J. Mater. Sci. Mater. Electron., vol. 32, pp. 2832–2844, 2021. https://doi.org/10.1007/s10854-020-05036-5.Suche in Google Scholar

[51] S. F. Mansour, M. A. Abdo, and S. M. Alwan, “The role of Cr3+ ions substitution on structural, magnetic and dielectric modulus of manganese zinc nanoferrites,” Ceram. Int., vol. 44, pp. 8035–8042, 2018. https://doi.org/10.1016/j.ceramint.2018.01.244.Suche in Google Scholar

[52] A. Benali, A. Souissi, M. Bejar, E. Dhahri, M. F. P. Graça, and M. A. Valente, “Dielectric properties and alternating current conductivity of sol–gel made La0.8Ca0.2FeO3 compound,” Chem. Phys. Lett., vol. 637, p. 7, 2015. https://doi.org/10.1016/j.cplett.2015.07.041.Suche in Google Scholar

[53] A. Zaafouri, M. Megdiche, and M. Gargouri, “Studies of electric, dielectric, and conduction mechanism by OLPT model of Li4P2O7,” Ionics, vol. 21, p. 1867, 2015. https://doi.org/10.1007/s11581-015-1365-7.Suche in Google Scholar

[54] A. Zubair, S. A. Siddiqui, F. A. Khan, and M. A. Alim, “Electrical and magnetic properties of Co substituted MnZnFe2O4,” Phys. Status Solidi A, vol. 209, no. 12, pp. 2441–2448, 2012. https://doi.org/10.1002/pssa.201228486.Suche in Google Scholar

[55] S. Pandey, D. Kumar, O. Parkash, and L. Pandey, “Equivalent circuit models using CPE for impedance spectroscopy of electronic ceramics,” Integr. Ferroelectr., vol. 183, pp. 141–162, 2017. https://doi.org/10.1080/10584587.2017.1376984.Suche in Google Scholar

[56] R. K. Katare, L. Pandey, O. P. Thakur, O. Parkash, and D. Kumar, “Equivalent circuit model of Ca1-xYxTi1-xCoxO3 using impedance spectroscopy,” Mod. Phys. Lett. B, vol. 17, pp. 339–346, 2003. https://doi.org/10.1142/S0217984903005238.Suche in Google Scholar

[57] M. M. Kaci, N. Nasrallah, A. M. Djaballah, et al.., “Insights into the optical and electrochemical features of CuAl2O4 nanoparticles and it use for methyl violet oxidation under sunlight exposure,” Opt. Mater., vol. 126, p. 112198, 2022. https://doi.org/10.1016/j.optmat.2022.112198.Suche in Google Scholar

[58] K. C. B. Naidu, T. S. Sarmash, M. Maddaiah, et al.., “Synthesis and characterization of MgO-doped SrTiO3 ceramics,” J. Aust. Ceram. Soc., vol. 52, no. 1, pp. 95–101, 2016.Suche in Google Scholar

[59] N. Amri, J. Massoudi, K. Nouri, M. Triki, E. Dhahri, and L. Bessais, “Influence of neodymium substitution on structural, magnetic and spectroscopic properties of Ni–Zn–Al nano-ferrites,” RSC Adv., vol. 11, p. 13256, 2021. https://doi.org/10.1039/d0ra10140k.Suche in Google Scholar PubMed PubMed Central

[60] K. Roumaih, “Magnetic properties of Ni–Cu–Mn ferrite system,” J. Mol. Struct., vol. 1004, pp. 1–7, 2011. https://doi.org/10.1016/j.molstruc.2011.06.007.Suche in Google Scholar

[61] K. F. Wang, J.-M. Liu, and Z. F. Ren, “Multiferroicity: the coupling between magnetic and polarization orders,” Adv. Phys., vol. 58, no. 4, pp. 321–448, 2009. https://doi.org/10.1080/00018730902920554.Suche in Google Scholar

[62] M. Jeddi, H. Gharsallah, M. Bejar, M. Bekri, E. Dhahri, and E. K. Hlil, “Magnetocaloric study, critical behavior and spontaneous magnetization estimation in La0.6Ca0.3Sr0.1MnO3 perovskite,” RSC Adv., vol. 8, p. 943, 2018.10.1039/C8RA00001HSuche in Google Scholar PubMed PubMed Central

[63] M. Nasri, M. Triki, E. Dhahri, M. Hussein, P. Lachkar, and E. K. Hlil, “Investigation of structural, magnetocaloric and electrical properties of La0.6Ca0.4−xSrxMnO3 compounds,” Phys. Rev. B Condens. Matter Mater. Phys., vol. 408, p. 104, 2013. https://doi.org/10.1016/j.physb.2012.09.003.Suche in Google Scholar

[64] K. Roumaih, S. M. Ismail, S. Labib, and A. Helal, “Structural, magnetic, and optical properties of ZnFe2O4/RO (RO = CdO, NiO, Ga2O3, SnO2, and TiO2) nanocomposites,” J. Mater. Sci., vol. 58, pp. 7948–7967, 2023. https://doi.org/10.1007/s10853-023-08539-8.Suche in Google Scholar

[65] K. K. Bamzai, G. Kour, B. Kaur, M. Arora, and R. P. Pant, “Infrared spectroscopic and electron paramagnetic resonance studies on Dy substituted magnesium ferrite,” J. Magn. Magn. Mater., vol. 345, pp. 255–260, 2013. https://doi.org/10.1016/j.jmmm.2013.07.002.Suche in Google Scholar

[66] K. R. Mahmoud, O. M. Hemeda, T. Sharshar, and M. A. Hamad, “Strong correlations between positron annihilation spectroscopy and ESR for Mn0.1MgxZn0.9−xFe2O4 ceramics,” J. Supercond. Nov. Magn., vol. 30, pp. 3143–3154, 2017. https://doi.org/10.1007/s10948-017-4126-1.Suche in Google Scholar

[67] M. Deepty, C. Srinivas, K. V. Babu, et al.., “Structural and electron spin resonance spectroscopic studies of Mn Zn1−Fe2O4 (x = 0.5, 0.6, 0.7) nanoferrites synthesized by sol-gel auto combustion method,” J. Magn. Magn. Mater., vol. 466, pp. 60–68, 2018. https://doi.org/10.1016/j.jmmm.2018.06.078.Suche in Google Scholar

[68] M. Sparks, “Ferromagnetic resonance porosity linewidth theory in polycrystalline insulators,” J. Appl. Phys., vol. 36, pp. 1570–1573, 1965. https://doi.org/10.1063/1.1703089.Suche in Google Scholar

[69] P.-W. Anderson and P. R. Weiss, “Exchange narrowing in paramagnetic resonance,” Rev. Mod. Phys., vol. 25, p. 269, 1953. https://doi.org/10.1103/revmodphys.25.269.Suche in Google Scholar

[70] P. K. Nayak, “Synthesis and characterization of cadmium ferrite,” Mater. Chem. Phys., vol. 112, pp. 24–26, 2008. https://doi.org/10.1016/j.matchemphys.2008.05.018.Suche in Google Scholar

Received: 2023-07-14
Accepted: 2023-10-29
Published Online: 2023-11-27
Published in Print: 2024-05-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0183/html
Button zum nach oben scrollen