Abstract
The neutron capture rates and Maxwellian-averaged cross-sections (MACS) for 90Zr(n,γ)91Zr and 92Zr(n,γ)93Zr processes have been computed within the framework of Talys v1.96. The effects of phenomenological nuclear level density (NLD) parameters and the gamma strength functions (GSFs) on Maxwellian-averaged cross-sections and neutron capture rates are examined both quantitatively and qualitatively. The present model-based computed data for MACS and reaction rates gives a good comparison with the existing literature. The fine-tuning of the statistical model’s nuclear properties (level density and gamma-ray strength) to reproduce experimental data will allow the detailed investigation of the s-process network.
-
Research ethics: None applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, “Synthesis of the elements in stars,” Rev. Mod. Phys., vol. 29, p. 547, 1957, https://doi.org/10.1103/revmodphys.29.547.Suche in Google Scholar
[2] A. G. W. Cameron, “Nuclear reactions in stars and nucleogenesis,” PASP, vol. 69, p. 201, 1957, https://doi.org/10.1086/127051.Suche in Google Scholar
[3] F. Kappeler, R. Gallino, S. Bisterzo, and W. Aoki, “Thesprocess: nuclear physics, stellar models, and observations,” Rev. Mod. Phys., vol. 83, p. 157, 2011, https://doi.org/10.1103/revmodphys.83.157.Suche in Google Scholar
[4] M. Lugaro, F. Herwig, J. C. Lattanzio, R. Gallino, and O. Straniero, “s‐Process nucleosynthesis in asymptotic giant branch stars: a test for stellar evolution,” Astrophys. J., vol. 586, p. 1305, 2003, https://doi.org/10.1086/367887.Suche in Google Scholar
[5] C. M. Raiteri, M. Busso, R. Gallino, and G. Picchio, “S-process nucleosynthesis in massive stars and the weak component. II – carbon burning and galactic enrichment,” Astrophys. J., vol. 371, p. 665, 1991, https://doi.org/10.1086/169932.Suche in Google Scholar
[6] F. Kappeler, R. Gallino, M. Busso, G. Picchio, and C. M. Raiteri, “S-process nucleosynthesis - Classical approach and asymptotic giant branch models for low-mass stars,” Astrophys. J., vol. 354, p. 630, 1990.10.1086/168720Suche in Google Scholar
[7] M. Busso, R. Gallino, L. D. Lambert, C. Travaglio, and V. V. Smith, “Nucleosynthesis and mixing on the asymptotic giant branch. III. Predicted and observeds‐process abundances,” Astrophys. J., vol. 557, p. 802, 2001, https://doi.org/10.1086/322258.Suche in Google Scholar
[8] A. Koloczek, et al.., “Sensitivity study for s process nucleosynthesis in AGB stars,” At. Data Nucl. Data Tables, vol. 108, p. 16, 2016, https://doi.org/10.1016/j.adt.2015.12.001.Suche in Google Scholar
[9] G. Tagliente, et al.., “Neutron capture cross section of 90Zr: Bottleneck in the s-process reaction flow,” Phys. Rev. C., vol. 77, p. 035802, 2008.Suche in Google Scholar
[10] J. W. Boldeman, B. J. Allen, et al.., “Valence component in the neutron capture cross section of 90Zr,” Nucl. Phys. A, vol. 246, p. 20, 1975.10.1016/0375-9474(75)90559-XSuche in Google Scholar
[11] K. Ohgfama, et al.., “Measurement of keV-Neutron Capture Cross Sections and Capture Gamma-Ray Spectra of 91,92Zr,” J. Nucl. Sci. Technol., vol. 42, p. 333, 2005. https://doi.org/10.1080/18811248.2005.9726399.Suche in Google Scholar
[12] W. M. Good and H. Kim, “Neutron total cross sections of even isotopes of Zr in the energy range 2–60 keV,” Phys. Rev., vol. 165, p. 1329, 1968, https://doi.org/10.1103/physrev.165.1329.Suche in Google Scholar
[13] Z. M. Bartolome, R. W. Hockenbury, W. R. Moyer, J. R. Tatarczuk, and R. C. Block, “Neutron radiative capture and transmission measurements of W and Zr isotopes in the keV region,” Nucl. Sci. Eng., vol. 37, p. 137, 1969, https://doi.org/10.13182/nse69-a20905.Suche in Google Scholar
[14] G. Tagliente, et al.., “The 92Zr(n,γ) reaction and its implications for stellar nucleosynthesis,” Phys. Rev. C, vol. 81, p. 055801, 2010. https://doi.org/10.1103/PhysRevC.81.055801.Suche in Google Scholar
[15] A. J. Koning, S. Hilaire, and S. Goriely, TALYS–1.96 A Nuclear Reaction Program, User Manual, Netherlands, Nuclear Research and Consultancy Group (NRG), 2021. Available at: http://www.talys.eu.Suche in Google Scholar
[16] W. Hauser and H. Feshbach, “The inelastic scattering of neutrons,” Phys. Rev., vol. 87, p. 366, 1952, https://doi.org/10.1103/physrev.87.366.Suche in Google Scholar
[17] S. Goriely, S. Hilaire, and A. J. Koning, “Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications,” Astron. Astrophys., vol. 487, p. 767, 2008, https://doi.org/10.1051/0004-6361:20078825.10.1051/0004-6361:20078825Suche in Google Scholar
[18] D. Rochman, S. Goriely, A. J. Koning, and H. Ferroukhi, “Radiative neutron capture: Hauser Feshbach vs. statistical resonances,” Phys. Lett. B, vol. 764, p. 109, 2017, https://doi.org/10.1016/j.physletb.2016.11.018.Suche in Google Scholar
[19] A. J. Koning and J. P. Delaroche, “Local and global nucleon optical models from 1 keV to 200 MeV,” Nucl. Phys. A., vol. 713, p. 231, 2003, https://doi.org/10.1016/s0375-9474(02)01321-0.Suche in Google Scholar
[20] A. Gilbert and A. G. W. Cameron, “A composite nuclear-level density formula with shell corrections,” Can. J. Phys., vol. 43, p. 1446, 1965. https://doi.org/10.1139/p65-139.Suche in Google Scholar
[21] W. Dilg, W. Schantl, H. Vonach, and M. Uhl, “Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250,” Nucl. Phys. A, vol. 217, p. 269, 1973, https://doi.org/10.1016/0375-9474(73)90196-6.Suche in Google Scholar
[22] A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, “Role of collective effects in the systematics of nuclear level densities,” Sov. J. Nucl. Phys., vol. 29, p. 450, 1979.Suche in Google Scholar
[23] A. V. Ignatyuk, J. L. Weil, S. Raman, and S. Kahane, “Density of discrete levels in Sn116,” Phys. Rev. C, vol. 47, p. 1504, 1993, https://doi.org/10.1103/physrevc.47.1504.Suche in Google Scholar PubMed
[24] D. M. Brink, “Individual particle and collective aspects of the nuclear photoeffect,” Nucl. Phys., vol. 4, p. 215, 1957, https://doi.org/10.1016/0029-5582(87)90021-6.Suche in Google Scholar
[25] P. Axel, “Electric dipole ground-state transition width strength function and 7-Mev photon interactions,” Phys. Rev., vol. 126, p. 671, 1962, https://doi.org/10.1103/physrev.126.671.Suche in Google Scholar
[26] J. Kopecky and M. Uhl, “Test of gamma-ray strength functions in nuclear reaction model calculations,” Phys. Rev. C, vol. 41, p. 1941, 1990, https://doi.org/10.1103/physrevc.41.1941.Suche in Google Scholar PubMed
[27] S. Goriely, S. Hilaire, S. Péru, and K. Sieja, “Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section,” Phys. Rev. C, vol. 98, p. 014327, 2018, https://doi.org/10.1103/physrevc.98.014327.Suche in Google Scholar
[28] A. Kabir and J. U. Nabi, “Re-examination of astrophysical S-factor of proton capture 9Be (p, γ) 10B in stellar matter,” Nucl. Phys. A, vol. 1007, p. 122118, 2021. https://doi.org/10.1016/j.nuclphysa.2020.122118.Suche in Google Scholar
[29] A. Kabir, J. U. Nabi, S. Sagheer, and L. Rashid, “Radiative capture of proton by 9Be(p, γ)10B at low energy,” Commun. Theor. Phys., vol. 74, p. 025301, 2022, https://doi.org/10.1088/1572-9494/ac47ae.Suche in Google Scholar
[30] A. Kabir, B. F. Irgaziev, and J. U. Nabi, “Proton capture cross-section for 12C at low energy,” Braz. J. Phys., vol. 50, p. 112, 2020, https://doi.org/10.1007/s13538-019-00716-y.Suche in Google Scholar
[31] A. Kabir, B. F. Irgaziev, and J. U. Nabi, “Radiative capture of proton by 13C at low energy,” Astrophys. Space Sci., vol. 365, p. 1, 2020, https://doi.org/10.1007/s10509-020-03807-4.Suche in Google Scholar
[32] A. Kabir, B. F. Irgaziev, J. U. Nabi, and S. Sagheer, “Re-analysis of radiative capture11C(p, γ)12N at low energy,” J. Phys. G: Nucl. Part. Phys., vol. 49, p. 075101, 2022, https://doi.org/10.1088/1361-6471/ac6362.Suche in Google Scholar
[33] A. J. Koning, S. Hilaire, and S. Goriely, “Global and local level density models,” Nucl. Phys. A., vol. 810, p. 13, 2008, https://doi.org/10.1016/j.nuclphysa.2008.06.005.Suche in Google Scholar
[34] https://www.nndc.bnl.gov/astro/calcmacs.jsp, 1994.Suche in Google Scholar
[35] R. L. Macklin and J. H. Gibbons, “Quantitative tests of s-PROCESS in stellar nucleosynthesis for solar system material,” Astrophys. J., vol. 149, p. 577, 1967, https://doi.org/10.1086/149287.Suche in Google Scholar
[36] For results compiled in evaluated nuclear data libraries International Atomic Energy Agency (IAEA) on www-nds.iaea.org, or the OECD Nuclear Energy Agency on www.nea.fr/html/dbdata/4.Suche in Google Scholar
[37] Z. Y. Bao, H. Beer, F. Käppeler, F. Voss, K. Wisshak, and T. Rauscher, “Neutron cross sections for nucleosynthesis studies,” At. Data Nucl. Data Tables, vol. 76, p. 70, 2000. https://doi.org/10.1006/adnd.2000.0838.Suche in Google Scholar
[38] T. Nakagawa, S. Chiba, T. Hayakawa, and T. Kajino, “Maxwellian-averaged neutron-induced reaction cross sections and astrophysical reaction rates for kT=1keV to 1MeV calculated from microscopic neutron cross section library JENDL-3.3,” At. Data Nucl. Data Tables, vol. 91, p. 77, 2005, https://doi.org/10.1016/j.adt.2005.08.002.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- General
- Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
- Atomic, Molecular & Chemical Physics
- Investigations on the EPR parameters and local structures for the substitutional Ti3+ and W5+ centers in stishovite
- Dynamical Systems & Nonlinear Phenomena
- The effects of viscosity on the structure of shock waves in a van der Waals gas
- Traveling wavefronts in an anomalous diffusion predator–prey model
- Bifurcation and stability analysis of atherosclerosis disease model characterizing the anti-oxidative activity of HDL during short- and long-time evolution
- Nuclear Physics
- Investigation of 90,92Zr(n,γ)91,93Zr in the s-process nucleosynthesis
- Quantum Theory
- Quantum-mechanical treatment of two particles in a potential box
- Solid State Physics & Materials Science
- Unveiling the luminescence property of Pr-incorporated barium cerate perovskites for white LED applications
- Electrical and magnetic properties of MF/CuAl nanocomposites
Artikel in diesem Heft
- Frontmatter
- General
- Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
- Atomic, Molecular & Chemical Physics
- Investigations on the EPR parameters and local structures for the substitutional Ti3+ and W5+ centers in stishovite
- Dynamical Systems & Nonlinear Phenomena
- The effects of viscosity on the structure of shock waves in a van der Waals gas
- Traveling wavefronts in an anomalous diffusion predator–prey model
- Bifurcation and stability analysis of atherosclerosis disease model characterizing the anti-oxidative activity of HDL during short- and long-time evolution
- Nuclear Physics
- Investigation of 90,92Zr(n,γ)91,93Zr in the s-process nucleosynthesis
- Quantum Theory
- Quantum-mechanical treatment of two particles in a potential box
- Solid State Physics & Materials Science
- Unveiling the luminescence property of Pr-incorporated barium cerate perovskites for white LED applications
- Electrical and magnetic properties of MF/CuAl nanocomposites